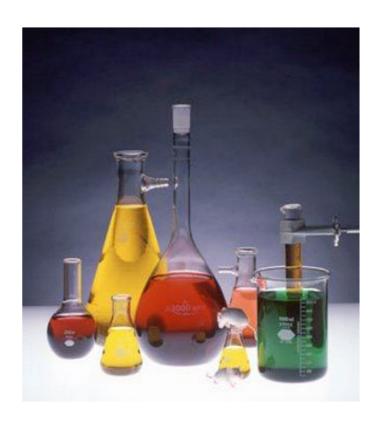


Superintendência das Escolas Estaduais de Fortaleza

2010

MANUAL DE PRÁTICAS LABORATORIAIS



QUÍMICA

Secretaria da Educação Superintendência das Escolas Estaduais de Fortaleza

MANUAL DE PRÁTICAS LABORATORIAIS QUÍMICA - ENSINO MÉDIO

Comissão de Formação e Pesquisa da SEFOR

Fortaleza - CE 2010

Secretaria da Educação Superintendência das Escolas Estaduais de Fortaleza

Governador do Estado do Ceará

Cid Ferreira Gomes

Vice-Governador

Francisco José Pinheiro

Secretária da Educação

Maria Izolda Cela de Arruda Coelho

Secretário Adjunto

Maurício Holanda Maia

Secretário Executivo

Antônio Idilvan de Lima Alencar

Assessora Institucional do Gabinete da SEDUC

Cristiane Carvalho Holanda

Superintendência das Escolas de Fortaleza

Lúcia Maria Gomes

Articulador da SEFOR

Marcos Antônio Seixas de Melo

Núcleo Pedagógico - NUPED

Rógers Vasconcelos Mendes

Núcleo de Formação de Pessoas - NUFOR

Elisabeth Gomes Pereira

Responsável pelos Laboratórios de Ciências, Educação Científica e Ambiental

Daniel Vasconcelos Rocha

Concepção e Organização da Coleção

Daniel Vasconcelos Rocha Fernando Barros da Silva Filho

Coordenação da Coleção

Daniel Vasconcelos Rocha

Autores

Daniel Ricardo Ximenes Lopes Daniel Vasconcelos Rocha Fernando Barros da Silva Filho José Wellington Leite Teófilo Ricardo Araújo Felipe Targino Magalhães de Carvalho Filho

Projeto Gráfico

Fernando Barros da Silva Filho

Diagramação Eletrônica

Daniel Vasconcelos Rocha Fernando Barros da Silva Filho José Wellington Leite Teófilo Ricardo Araújo Felipe

Ilustrações

Daniel Vasconcelos Rocha Fernando Barros da Silva Filho José Wellington Leite Teófilo Ricardo Araújo Felipe

Revisão Lingüística

Daniel Ricardo Ximenes Lopes Daniel Vasconcelos Rocha Fernando Barros da Silva Filho José Wellington Leite Teófilo Ricardo Araújo Felipe Targino Magalhães de Carvalho Filho

Catalogação

Albaniza Teixeira Alves

C387m Ceará. Secretaria da Educação.

Manual de práticas laboratoriais: química. / Secretaria da Educação; Daniel Ricardo Ximenes Lopes... [et.al] – Fortaleza: SEDUC, 2010.

123p.; il. – (Comissão de Formação e Pesquisa da SEFOR)

1. Química – (Ensino Médio). I. Lopes, Daniel Ricardo Ximenes. II. Título. III. Série.

CDD 540

CDU 54

Sumário

Apresentação	9
Introdução ao Trabalho em Laboratório: Relatório de Atividades Práticas	11
Competências e Habilidades – Química	14
Detaine none Aules Ermenimentais de 1º ene de Ensine Médie	21
Roteiro para Aulas Experimentais do 1º ano do Ensino Médio Prática 1: Normas de Segurança, Instruções Gerais, Materiais e Técnicas Básicas de Laboratório	
Prática 2: Medidas em Química: Massa e Volume	
Prática 3: Fenômenos Físicos e Químicos Prática 4: Identificando os Sistemas Hemogâneos a Heteragâneos	
Prática 4: Identificando os Sistemas Homogêneos e Heterogêneos	
Prática 6: Estudo das Leis Ponderais	
Prática 7: Identificando os Átomos Através da Energia por Ele Liberada	
• •	36 40
Prática 8: Cromatografia	
Prática 10: Testando as Propriedades das Ligações Químicas	
Prática 11: Tipos de Reações Químicas	
Prática 12: Identificação de Ácidos e Bases	
Prática 13: Identificação de Ácidos e Bases Utilizando Indicadores Naturais	
Prática 14: Preparo de um Indicador de pH Utilizando Beterraba	
Prática 15: Preparação de Sais e Óxidos	
Prática 16: Reações Redox (Redução –Oxidação)	
Roteiro para Aulas Experimentais do 2º ano do Ensino Médio	50
Prática 1: Análise dos Mecanismos de Dissolução e Coeficiente de Solubilidade	
Prática 2: Soluções Supersaturadas	
Prática 3: Anállise Volumétrica: Titulação	
Prática 5: Preparação e Padronização do NaCl 0,1M	
Prática 6: Determinação da Acidez do Leite Pasteurizado	
Prática 7: Análise Físico-Química das Águas para Potabilidade	
Prática 8: Controle de Qualidade dos Medicamentos (Aspirina)	
Prática 9: Propriedades Coligativas: Ebulioscopia e Crioscopia	
Prática 10: Propriedades Coligativas: Osmose	
Prática 11: Termoquímica: Entalpia ou Calor de Neutralização	
Prática 12: Cinética Química	81
Prática 13: Velocidade da Reação de Deslocamento do Permanganato de Potássio	
Prática 14: Ácidos e Bases e o Equilíbrio de Le Chatelier	
Prática 15: Catalisadores	88
Prática 16: Pilha de Daniel	90

Roteiro para Aulas Experimentais do 3º ano do Ensino Médio	92
Prática 1: Estudo da Geometria Molecular nas Cadeias Carbônicas	93
Prática 2: Diferenças entre as Substâncias Orgânicas e Inorgânicas	95
Prética 3: Análise Orgânica Elementar	98
Prática 4: Utilidade de Jogos nas Principais Funções Orgânicas	101
Prática 5: Teor de Etanol na Gasolina	102
Prática 6: Oxidação do Etanol (Princípio do Etiômetro	104
Prática 7: Definição Operacional de Aldeídos e Cetonas	106
Prática 8: Caracterização do Grupamento Funcional Carbonila	108
Prática 9: Caráter Ácido na Química Orgânica	110
Prática 10: Reação de Esterificação	112
Prática 11: Isomeria	114
Prática 12: Papiloscopia	116
Prática 13: Reação de Saponificação	118
Prática 14: Produção de Polímero	120
Prática 15: Determinação do Caráter Ácido-Base dos Surfactantes	122
Prática 16: Identificação de Proteínas, Glídios e Lipídios nos Alimentos	123
Sítios Interessantes	125
Referências Bibliográficas	126
Comissão de Formação e Pesquisa da SEFOR: Ficha Técnica dos Autores	127

APRESENTAÇÃO

Com base nas atuais bibliografias e matrizes curriculares, trazemos estes roteiros de práticas laboratoriais com foco na padronização da rotina prática experimental dos laboratórios didáticos de ciências das escolas publicas estaduais.

Nestes manuais de práticas laboratoriais, procuramos sempre relacionar as aulas experimentais com a atual proposta curricular para as disciplinas de Ciências, Biologia, Química, Física e Matemática do estado do Ceará.

No início dos manuais disponibilizando as competências e habilidades propostas para cada disciplina para serem exploradas durante a realização das atividades práticas.

Os autores são professores lotados nos laboratórios de ciências e construíram estes manuais práticos experimentais dentro da realidade das escolas publicas estaduais.

Os experimentos propostos possuem um nível científico e didático interligando as práticas do cotidiano dos estudantes com a vivência em sala de aula, podendo, assim, manter a interdisciplinaridade das ciências para a melhor compreensão da teoria.

Este material não tem a pretensão de suprir ou esgotar as necessidades didáticas experimentais do ambiente laboratorial, mas sim, vem como suporte no desenvolvimento da rotina dos laboratórios de ciências.

Os Autores

RELATÓRIO DE ATIVIDADES PRÁTICAS – QUÍMICA

Estrutura de um relatório:

- 1- Capa
- 2- Folha de rosto (opcional)
- 3- Sumário ou índice (opcional)
- 4- Introdução/apresentação
- 5- Objetivos
- 6- Materiais Utilizados
- 7- Procedimentos Experimentais
- 8- Resultados e Discussão
- 9- Conclusões
- 10- Anexos (opcional)
- 11- Bibliografia

ELABORAÇÃO DE RELATÓRIO

Um relatório de aula prática deve apresentar uma linguagem direta, simples, impessoal e precisa. Não devem ser emitidas opiniões pessoais no texto, e sim deduções relativas aos resultados, de acordo com a bibliografia. Sabe-se que quando o trabalho experimental envolve seres vivos, é difícil obter resultados uniformes, pois estes têm variações numa mesma população, e porque pode ocorrer que nem todos os fatores envolvidos na experiência estejam sendo controlados.

Sugestões de itens para um relatório:

1. CAPA

É a identificação do relatório e do(s) autores. Deve conter: Nome da escola; disciplina; série; turma; turno; nome/equipe; título; local; data.

Deve ser padronizado e formal.

Escola

Disciplina

Professor

Turma e Turno

TÍTULO DA PRÁTICA

Nome/Equipe

FORTALEZA, 25 DE MARÇO-2010

2. INTRODUÇÃO/APRESENTAÇÃO

É a síntese do conteúdo pesquisado e da prática realizada, de forma ampla e objetiva. É o convite a leitura do relatório.

3. OBJETIVO(S)

É o motivo/intuito da realização da prática que pode ser fornecido ou não para os alunos. Pode servir de *feed-back* ao professor que deseja saber se os alunos captaram os objetivos da prática.

4. MATERIAIS UTILIZADOS

É a listagem de todos os equipamentos, vidrarias, reagentes, materiais etc. utilizados durante a realização da prática. É muito importante para que o aluno saiba identificar e associar a função dos materiais utilizados.

5. PROCEDIMENTO EXPERIMENTAL

Devem ser fornecidos pelo professor para a realização da prática, de forma objetiva e clara, com intuito de facilitar o entendimento e ação dos alunos durante a realização da prática. No relatório, é cobrado o procedimento fornecido pelo professor acrescido de um embasamento teórico (pesquisa) para reforçar o experimento realizado e os métodos e técnicas usadas no trabalho experimental devem ser descritos.

6. RESULTADOS E DISCUSSÃO

É uma das partes mais importantes do relatório, pois é onde o aluno expõe os resultados obtidos da prática realizada, questiona o experimento e relata as facilidades e dificuldades enfrentadas. E onde o professor detecta as expectativas dos resultados versus resultados adquiridos.

7. CONCLUSÃO

As conclusões são feitas com base nos resultados obtidos; são deduções originadas da discussão destes. São afirmativas que envolvem a ideia principal do trabalho.

8. ANEXOS

É a parte onde estão anexados: questionário proposto, esquemas, gravuras, tabelas, gráficos, fotocópias, recortes de jornais, revistas etc.

É onde se colocam aditivos que enriquecem o relatório, mas que não são essenciais.

ANEXOS

9. BIBLIOGRAFIA

A bibliografia consultada deve ser citada. A citação dos livros ou trabalhos consultados deve conter nome do autor, título da obra, número da edição, local da publicação, editora, ano da publicação e as páginas:

Autor. Título e subtítulo; Edição (número); local: Editora. Data. Página.

Exemplo:

GONDIM, Maria Eunice R.; GOMES, Rickardo Léo Ramos. *Práticas de Biologia*; Fortaleza: Edições Demócrito Rocha. 2004.1-122p.

COMPETÊNCIAS E HABILIDADES - QUÍMICA

REPRESENTAÇÃO E COMUNICAÇÃO

Símbolos, códigos e nomenclaturas.	VI. Reconhecer e utilizar adequadamente na forma oral e escrita símbolos, códigos e nomenclatura da linguagem cientifica.	 V-Q1. Reconhecer e compreender símbolos, códigos e nomenclatura própria da Química e da tecnologia química; por exemplo, interpretar símbolos e termos químicos em rótulos de produtos alimentícios, águas minerais, produtos de limpeza e bulas de medicamentos; ou mencionados em notícias e artigos jornalísticos. V-Q2. Identificar e relacionar unidades de medida usadas para diferentes grandezas, como massa, energia, tempo, volume, densidade, concentração de soluções.
Articulação dos símbolos e códigos.	V2. Ler, articular, e interpretar símbolos e códigos em diferentes linguagens e representações: sentenças, equações, esquemas, diagramas, tabelas, gráficos e representações geométricas.	 V-Q3. Ler e interpretar informações e dados apresentados com diferentes linguagens ou formas de representação, – como símbolos, fórmulas e equações químicas, tabelas, gráficos, esquemas, equações. V-Q4. Selecionar e fazer uso apropriado de diferentes linguagens e formas de representação, como esquemas, diagramas, tabelas, gráfico, traduzindo umas nas outras. Por exemplo, traduzir em gráficos informações de tabelas ou textos sobre índices de poluição atmosférica em diferentes períodos ou locais.
Analise e interpretação de textos e outras comunicações.	V3. Consultar, analisar e interpretar textos e comunicações de ciência e tecnologia veiculados por diferentes meios.	V-Q5. Analisar e interpretar diferentes tipos de textos e comunicações referentes ao conhecimento científico e tecnológico químico; por exemplo, interpretar informações de caráter químico em notícias e artigos de jornais, revistas e televisão, sobre agrotóxicos, concentração de poluentes, chuvas ácidas, camada de ozônio, aditivos em alimentos, flúor na água, corantes e reciclagens. V-Q6. Consultar e pesquisar diferentes fontes de informação, como enciclopédias, textos didáticos, manuais, teses, internet, entrevistas a técnicos e especialistas.

Elaboração de comunicações.	V4. Elaborar comunicações orais e escritas para relatar, analisar e sistematizar eventos, fenômenos, experimentos, questões, entrevistas, visitas e correspondências.	 V-Q7. Descrever fenômenos, substâncias, materiais, propriedades e eventos químicos, em linguagem científica, relacionando-os a descrições na linguagem corrente; por exemplo, articulando o significado de idéias como queima com o conceito científico de combustão, dando o significado adequado para expressões como "produto natural", "sabonete neutro", ou "alface orgânica". V-Q8. Elaborar e sistematizar comunicações descritivas e analíticas pertinentes a eventos químicos, utilizando linguagem científica, por exemplo, relatar visita a uma indústria química, informando sobre seus processos; elaborar relatório de experimento, descrevendo materiais, procedimentos e conclusões; elaborar questões para entrevista a técnico de algum campo da química, apresentar seminários e fazer sínteses.
Discussão e argumentação de temas de interesse.	V5. Analisar, argumentar e posicionar-se decididamente em relação a temas de ciência e tecnologia.	V-Q9. Diante de informações ou problema relacionados à Química, argumentar apresentando razões e justificativas; por exemplo, conhecendo o processo e custo da obtenção do alumínio a partir da eletrólise, posicionar-se sobre as vantagens e limitações da sua reciclagem; em uma discussão sobre o lixo, apresentar argumentos contra a favor da incineração ou acumulação em aterro.
Estratégias para enfrentamento de situações- problemas.	V6. Identificar em uma dada situação-problema as informações e variáveis relevantes e possíveis estratégias para resolvê-la.	V-Q10. Dada uma situação-problema, envolvendo diferentes dados químicos, identificar as informações para solucioná-la; e avaliar a viabilidade da fonte de água para consumo, identificando as grandezas e indicadores de qualidade, como pH, concentrações de substâncias e vetores patogênicos; para substituir lenha por carvão vegetal como fonte de energia térmica, consultar os respectivos valores de reconhecer, resolver um problema, selecionando procedimentos e estratégias adequados para a sua solução; em pesquisa sobre potabilidade de água, definir critérios de potabilidade, medidas, análises e cálculos.

Interações, relações e funções; não variantes e transformações.	V7. Identificar fenômenos e grandezas em dado domínio do conhecimento, estabelecer relações: identificar regularidades, não variantes e transformações.	V-Q11. Reconhecer e compreender fenômenos envolvendo interações e transformações químicas, identificando regularidades e invariantes, Como, reconhece r a conservação no número de átomos de cada substância, assim como a conservação de energia, nas transformações e representações das reações. V-Q12. Compreender que as interações entre matéria e energia, em um certo tempo, resultam em modificações da forma ou natureza da matéria, considerando os aspectos qualitativos e macroscópicos; por exemplo, o desgaste mecânico que modifica a sua forma, ou por outra interação, que modifica a natureza do material; interações do calcário com o calor resultam em modificações na natureza, obtendo-se um material, a cal. V-Q13. Identificar transformações químicas pela percepção de mudanças na natureza dos materiais ou da energia, associando-as a uma dada escala de tempo; por exemplo, identificar que rochas magmáticas, como granito e basalto, se transformam em sedimentares, como areia e argila, em escalas de tempo geológicas; perceber explosões como combustões completas, onde todos os reagentes se transformam em produtos, durante curto tempo, transformando energia em trabalho.
Medidas, quantificações, grandezas e escalas.	V8. Selecionar e utilizar medição e calculo, representar dados e utilizar escalas, fazer estimativas, elaborar hipóteses e interpretar resultados.	 V-Q14. Fazer previsões e estimativas de quantidades ou intervalos esperados para os resultados de medidas; por exemplo, prever relações entre massas, energia a intervalos de tempo em transformações químicas. V-Q15. Selecionar e utilizar materiais e equipamentos adequados para fazer medidas, cálculos e realizar experimentos; por exemplo, selecionar material para o preparo de uma solução em função da finalidade; selecionar instrumentos para medidas de massa, temperatura, volume, densidade e concentração.
Medidas, quantificações, grandezas e escalas.	V9. Selecionar e utilizar medição e calculo, representar dados e utilizar escalas, fazer estimativas, elaborar hipóteses e interpretar resultados.	<i>V-Q16</i> . Compreender e fazer uso apropriado de escalas, ao realizar, medir ou fazer representações. Por exemplo: ler e interpretar escalas em instrumentos como termômetros, balanças e indicadores de pH.

Modelos explicativos e representativos	V10. Reconhecer, utilizar, interpretar e propor modelos explicativos para fenômenos e sistemas naturais e tecnológicos.	 V-Q17. Reconhecer modelos explicativos sobre a natureza dos materiais e suas transformações; por exemplo, identificar os principais modelos de constituição da matéria criados ao longo do desenvolvimento científico. V-Q18. Elaborar e utilizar modelos macroscópicos e microscópicos para interpretar transformações químicas; elaborando modelos explicativo de a água doce com sabão produzir espuma, e a água salgada, não, ou para compreender o poder corrosivo de ácidos fortes. V-Q19. Reconhecer, nas limitações dos modelo a necessidade de alterá-lo; por exemplo, perceber até onde o modelo de Rutherford foi suficiente e por quais razões precisou dar lugar a outra imagem do átomo. V-Q20. Elaborar e utilizar modelos científicos que modifiquem as explicações do senso comum; por exemplo, a idéia de que óleo e água não se misturam devido a diferenças de densidade e não por questões de interação entre partículas.
Relações entre conhecimentos disciplinares e áreas.	VII. Articular, integrar e sistematizar fenômenos e teorias de uma ciência, entre ciências e áreas de conhecimento.	 V-Q21. Construir uma visão sistematizada das linguagens e campos de estudo da Química, estabelecendo conexões entre seus diferentes temas e conteúdos. V-Q22. Adquirir compreensão do mundo da Química como parte integrante através dos problemas que ela consegue resolver e dos fenômenos que podem ser descritos por seus conceitos e modelos. V-Q23 Articular o conhecimento químico de outras áreas nas situações-problema, identificando e relacionar aspectos químicos, físicos e biológicos em estudos sobre a produção, destino e tratamento de lixo e sobre a composição, poluição e tratamento das águas nos aspectos sociais, econômicos e ambientais.

COMPETÊNCIAS E HABILIDADES - QUÍMICA

CONTEXTUALIZAÇÃO SOCIOCULTURAL

Ciência e tecnologia na história.	V12. Compreender o conhecimento e o tecnológico como resultados de uma elaboração humana, inserido sem um processo histórico e social.	 V-Q24 Reconhecer e compreender a ciência e tecnologia químicas como criação humana, portanto inseridas na história e na sociedade em diferentes épocas; por exemplo, identificar a alquimia, na Idade Média, como visão de mundo típica da época. V-Q25 Perceber o papel desempenhado pela Química no desenvolvimento tecnológico e a complexa relação entre ciência e tecnologia ao longo da história; por exemplo, perceber que a manipulação do ferro e suas ligas, empírica e mítica, tinha a ver, no passado, com o poder do grupo social que a detinha, e que hoje, explicada pela ciência, continua relacionada a aspectos políticos e sociais.
Ciência e tecnologia na cultura contemporânea.	V13. Compreender a ciência e a tecnologia como partes integrantes da cultura humana contemporânea	 V-Q26 Identificar a presença do conhecimento químico na cultura humana contemporânea, em diferentes âmbitos e setores, como os domésticos, comerciais, artísticos, desde as receitas caseiras para limpeza, propagandas e uso de cosméticos, até em obras literárias, músicas e filmes. V-Q27 Compreender as formas pelas quais a Química influencia nossa interpretação do mundo atual, condicionando formas de pensar e interagir; por exemplo, discutir a associação irrefletida de "produtos químicos" com algo sempre nocivo ao ambiente ou à saúde. V-Q28 Promover e interagir com eventos e equipamentos culturais, voltados à difusão da ciência, como museus, exposições científicas, peças de teatro, programas de tevê.
Ciência e tecnologia na atualidade	V14. Reconhecer e avaliar o desenvolvimento tecnológico contemporâneo, suas relações com as ciências, seu papel na vida humana, sua presença no mundo cotidiano e seus impactos na vida social.	V-Q29 Reconhecer o papel do conhecimento químico no desenvolvimento tecnológico atual, em diferentes áreas do setor produtivo, industrial e agrícola; por exemplo, na fabricação de alimentos, corantes, medicamentos e novos materiais.

		T
Ciência e tecnologia na atualidade	V15. Reconhecer e avaliar o desenvolvimento tecnológico contemporâneo, suas relações com as ciências, seu papel na vida humana, sua presença no mundo cotidiano e seus impactos na vida social.	 V-Q30 Reconhecer aspectos relevantes do conhecimento químico e suas tecnologias na interação individual e coletiva do ser humano com o ambiente, por exemplo, o uso de CFC – cloro-flúor-carbono –, de inseticidas e agrotóxicos, de aditivos nos alimentos, os tratamentos de água e de lixo, a emissão de poluentes que aumentam o efeito estufa na atmosfera. V-Q31 Articular, integrar e sistematizar o conhecimento químico e o de outras áreas no enfrentamento de situações-problema; por exemplo, identificar e relacionar aspectos químicos, físicos e biológicos da produção e do uso de metais, combustíveis e plásticos, além de aspectos sociais, econômicos e ambientais.
Ciência tecnologia, ética e cidadania.	V16. Reconhecer e avaliar o caráter ético do conhecimento cientifico e tecnológico e utilizar esses conhecimentos no exercício da cidadania.	 V-Q32 Reconhecer as responsabilidades sociais decorrentes da aquisição de conhecimento na defesa da qualidade de vida e dos direitos do consumidor; por exemplo, para notificar órgãos responsáveis diante de ações como destinações impróprias de lixo ou de produtos tóxicos, fraudes em produtos alimentícios ou em suas embalagens. V-Q33 Compreender e avaliar a ciência e tecnologia química sob o ponto de vista ético para exercer a cidadania com responsabilidade, integridade e respeito; por exemplo, no debate sobre fontes de energia, julgar implicações de ordem econômica, social, ambiental, ao lado de argumentos científicos para tomar decisões a respeito de atitudes e comportamentos individuais e coletivos.

1º Ano do Ensino Médio: Química Geral

ROTEIRO PARA AULAS EXPERIMENTAIS DO 1º ANO DO ENSINO MÉDIO LABORATÓRIO DE QUÍMICA

PRÁTICA 01: NORMAS DE SEGURANÇA, INSTRUÇÕES GERAIS, MATERIAIS E TÉCNICAS BÁSICAS DE LABORATÓRIO

OBJETIVOS:

- A) Identificar e diferenciar os materiais e equipamentos do laboratório bem como assimilar sua função e método de utilização;
- B) Capacitar o aluno a estar no ambiente laboratorial.

MATERIAIS NECESSÁRIOS:

Os materiais listados abaixo são baseados nos laboratórios multidisciplinares de ciências sob regência da SEDUC – CE.

VIDRARIA	PORCELANA	EQUIPAMENTOS	OUTROS
Balão volumétrico	Almofariz e pistilo	Balança analítica e semi-analítica	Anel metálico
Bastão de vidro	Cápsula	Bico de Bunsen (gás)	Espátula
Béquer	Funil de Büchner	Centrífuga manual e elétrica	Garras
Bureta		Estufa	Pinças
Erlenmeyer		Paquímetro	Suporte universal
Funil		pHmetro	Tela de amianto
Kitassato		Termômetro	Tripé
Dessecador		Bomba de vácuo	Pêra
Pipeta graduada		Espectofotômetro	Micropipeta
Pipeta volumétrica		Capela	
Proveta		Agitador magnético	
Tubo de ensaio		Chapa aquecedora	
Tubo de centrífuga		Lamparina	
Vidro de relógio			
Bastão (baqueta)			

PROCEDIMENTO:

Os materiais devem ser dispostos no laboratório de forma que o professor possa demonstrar a função e a utilização de cada item.

É de grande importância que os alunos tenham contato com o material o que se possível deve acontecer.

A atividade experimental é um instinto próprio ao ser humano, o simples fato de provar uma colher de um refresco qualquer para obter a informação se este já está "no ponto" já demonstra esta natureza.

A atividade experimental tem como objetivo principal a obtenção do conhecimento do ambiente e como este interage conosco. Se somos parte do ambiente e interagimos constantemente com os materiais que nele se encontram, temos motivos suficiente para investigarmos quais as características, as propriedades e as variáveis que este ambiente pode apresentar.

Para tanto, o trabalho experimental em laboratório exige certos comportamentos, os quais são assimilados com o passar do tempo e com a "experiência" obtida.

Abaixo segue uma lista de regras básicas que dever ser assimiladas por todos que desejam um bom e seguro desempenho em um laboratório de química:

- Mantenha o ambiente limpo e organizado;
- Esteja sempre atento as informações do professor;
- Nunca realize brincadeiras que gere risco;
- Mantenha os materiais que se encontram sobre sua bancada, organizados e identificados;
- Só utilize um equipamento se souber manipulá-lo, caso negativo, procure o professor;
- Nunca tenha contato direto com os reagentes, caso positivo, procure o professor imediatamente;
- Não coloque as mãos nos olhos e boca e lave bem as mãos antes de sair do laboratório;
- Conheça o material antes de manipulá-lo;
- Não utilize material sujo ou em más condições;
- Ao terminar a atividade, descarte os materiais conforme as orientações do professor e lave as vidrarias utilizadas com cuidado para não acidentar-se;
- Anote todas as observações feitas por você e pelo grupo durante a atividade.

Tenha consciência que ainda existem muitas outras regras a serem explicitadas, porém com o passar do tempo você irá obtê-las, para isso, estar atento às informações do professor é uma das principais, pois a partir desta você irá obtendo "experiência".

Abaixo se encontra uma listagem dos principais materiais utilizados em um laboratório padrão, cada item com sua respectiva informação o que pode ser usado para o desenvolvimento da atividade.

VIDRARIAS

Balão volumétrico

Usado para preparar soluções com concentração bem definidas

Bastão de vidro

Utilizado para ajudar na dissolução de substâncias e na agitação em alguns casos.

Béquer

Usado no aquecimento de líquidos, reações de precipitação e etc.

Bureta

Usada para medir volumes precisos de líquidos, em análises volumétricas

Erlenmeyer

Usado em titulações e aquecimento de líquidos

Funil

Usado em transferência de líquidos e em filtrações de laboratório. O funil com colo longo de estrias é chamado de funil analítico

Kitassato

Usado em conjunto para filtrações a vácuo

Pipeta graduada

Usada para medir volumes variáveis de líquidos

Pipet

a volumétrica

Mede volumes fixos de líquidos

Proveta

Usado em medidas aproximadas de volumes de líquidos

Tubo de ensaio

Usado em reações químicas, principalmente em testes de reações

Tubo de centrífuga

Usado para realizar a separação de substâncias com diferença sensível de densidade

Vidro de relógio

Usado para cobrir béqueres em evaporações, pesagens e fins diversos

PORCELANA

Almofariz e pistilo

Usado para triturar e pulverizar sólidos

Cápsula

Usada para evaporar líquidos em soluções

Funil de Büchner

Usado para realizar filtrações a vácuo

EQUIPAMENTOS

Balança

Utilizado para quantificar medidas precisas de sustâncias

Bico de Bunsen (gás)

Sistema de fornecimento de energia na forma de calor

Centrífuga Manual

Utilizado para separar substâncias com diferença de densidade perceptíveis

Estufa

Usada para secagem de materiais(até 200° C).

pHmetro

Utilizado para identificar o nível de acidez e basicidade de uma substância ou sistema

Termômetro

Utilizado para identificar o nível de agitação térmica presente em um sistema

OUTROS

Anel metálico

Usado para apoiar funis durante filtrações

Espátula

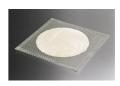
Utilizado para manipulação de sólidos em pequena quantidade

Garras

Usado em conjunto com o suporte universal para suspender vidrarias ou equipamentos

Pinça tubo de ensaio

Usado para manusear tubos de ensaio durante certas reações, em especial as de aquecimento


Suporte universal

Utilizado para a suspensão de vidrarias e equipamentos

Tela de amianto

Permite o aquecimento de substâncias em vidrarias impedindo o contato direto com a chama do bico de Bunsen. É utilizado em conjunto com o tripé.

Tripé

Suporte utilizado com a grade de amianto e o bico de Bunsen no aquecimento de sistemas

Pêra

Utilizado em conjunto cós a pipeta para realizar a sucção de líquidos

PRÁTICA 02: MEDIDAS EM QUÍMICA: MASSA E VOLUME

OBJETIVOS:

- A) Familiarizar o aluno com os aparelhos e instrumentos específicos do estudo da química.
- B) Determinar medidas de massa e volume.

MATERIAL NECESSÁRIO:

Materiais		Reagentes
Bureta de 50 mL	Erlenmeyer de 125 mL	
Pipeta de 10 mL	Balança semi-analítica	Água
Proveta de 50 mL	Batança semi-anatitica	

PROCEDIMENTO:

Montagem e teste dos sistemas

- 1) Coloque 10 mL de água em uma pipeta e transfira para uma proveta de 50 mL. Observe a medida final e anote.
- 2) Meça 50 mL de água em uma proveta de 50 mL e transfira para um erlenmeyer de 125 mL. Confira os volumes.
- 3) Encha uma bureta com água. Informe-se como deve zerar e não deixar bolhas de líquido ao longo da bureta. Após tê-la zerado, abra a torneira e deixe escoar uma porção qualquer de líquido. Feche a torneira, leia e anote o volume escoado. Confira o resultado com o professor.
- 4) Meça 10 mL de água em uma bureta e transfira para uma proveta de 50mL. Conferir as medidas.
- 5) Coloque 10 mL de água em uma proveta de 50 ml e adicione 5 mL de água com uma pipeta.
- 6) Repita o item anterior usando uma bureta no lugar da pipeta.
- 7) Pese uma proveta de 50 mL.
- 8) Pese um béquer de 100 mL.
- 9) Pese um erlenmeyer de 125 mL.

- 10) Coloque 50 mL de água nos recipientes pesados secos nos itens anteriores e pese-os novamente. Anote os resultados.
- 11) Determine a massa e o volume de um sólido fornecido por seu professor utilize uma proveta e a balança nessa medida.

Observações:

- 1) O professor deve organizar previamente os materiais e reagentes necessários para o desenvolvimento da atividade.
- 2) Pode ser pedido aos alunos que pesquisem as características e cuidados a serem tomados com as vidrarias a serem utilizadas.
- 3) É indicado que o professor peça aos alunos a entrega de um relatório para ajudar nas técnicas de utilização das vidrarias.

PRÁTICA 03: FENÔMENOS FÍSICOS E QUÍMICOS

OBJETIVOS:

- A) Verificar por procedimento experimental as diferenças entre fenômenos químicos e fenômenos físicos
- B) Visualizar as evidências de um fenômeno químico

C) MATERIAIS NECESSÁRIOS:

Materiais	Reagentes
Cápsula de porcelana	Iodo
Vidro de relógio	Sacarose
Pinça de madeira	Sulfato de cobre penta-hidratado
Tubo ensaio	Ácido sulfúrico
Bico de Bunsen	
Palitos de fósforo	

PROCEDIMENTO:

Sublimação do Iodo

- 1) Coloque alguns cristais de iodo em uma cápsula de porcelana, tampe com um vidro de relógio e adicione gotas de água sobre este.
- 2) Aqueça o sistema por 10 segundos, deixe-o esfriar por aproximadamente 1 minuto e segurando o vidro de relógio com a pinça de madeira e observe
- .3) Observe e classifique o fenômeno em químico ou físico. Explique por quê.

Desidratação (Carbonização do açúcar)

- 1) Em dois béquers adicione três colheres medidas de $C_{12}H_{22}O_{11}$ (sacarose) e palito de fósforo, respectivamente.
- 2) A seguir acrescente em cada béquer 10 gotas de ácido sulfúrico concentrado e observe.
- 3) Classifique o fenômeno tentando explicar o ocorrido. Houve reação química?

Perda de água de cristalização

1) No bico de Busen, aqueça uma pequena porção de CuSO₄.5H₂O, colocando dentro de um tubo de ensaio. Quando notar alguma alteração desligue o gás.

- 2) O que ocorreu? Escreva a reação.
- 3) Quando esfriar, pingue um pouco de água. O que observou?
- 4) O fenômeno é físico ou químico? Explique por quê.

Observações:

- 1. O professor deve organizar previamente os materiais e reagentes necessários para o desenvolvimento da atividade.
- 2) Pode ser pedido aos alunos que pesquisem as características e cuidados a serem tomados com as substâncias a serem utilizadas.
- 3) É indicado que o professor peça aos alunos a entrega de um relatório para ajudar na identificação dos tipos de fenômenos.

PRÁTICA 04: IDENTIFICANDO OS SISTEMAS HOMOGÊNEOS E HETEROGÊNEOS OBJETIVOS:

A) Identificar experimentalmente sistemas homogêneos e sistemas heterogêneos.

MATERIAL NECESSÁRIO:

Materiais	Reagentes
Tubo de ensaio Pipeta	Álcool comum Acetona Benzina
	Iodo sólido Água

PROCEDIMENTO:

Montagem e teste dos sistemas

- 1) Coloque cerca de 2 mL de Álcool no tubo A, 2 mL de Acetona no tubo B, 2 mL de Benzina no tubo C e 2 mL de água no tubo D;
- 2) Adicione um cristal de iodo em cada um dos tubos de ensaio;
- 3) Deixe em repouso por cerca de um minuto e observe cuidadosamente os 4 sistemas;
- 4) Observe os sistemas e descreva em suas anotações, o numero de fases e a cor do sistema;
- 5) Misture os conteúdos dos tubos A e B, agite e deixe em repouso;
- 6) Observe o sistema e descreva em suas anotações, o numero de fases e a cor do sistema;
- 7) Misture agora o conteúdo dos tubos C e D, agite e deixe em repouso;
- 8) Observe os sistemas e descreva em suas anotações, o numero de fases e a cor do sistema;

Observações:

- 1) O professor deve organizar previamente os materiais e reagentes necessários para o desenvolvimento da atividade,
- 2) Pode ser pedido aos alunos que pesquisem as características e cuidados a serem tomados com as substâncias a serem utilizadas;
- 3) É indicado que o professor peça aos alunos a entrega de um relatório para ajudar na assimilação dos tipos de sistemas.

PRÁTICA 05: SEPARAÇÃO DE MISTURAS

OBJETIVOS:

A) Separar os componentes de vários tipos de misturas.

MATERIAL NECESSÁRIO:

Materiais	Reagentes
Tubo de ensaio Pipeta de 10 mL Funil Papel de filtro Almofariz e pistilo Béquer de100 mL Bico de Bunsen Ímã Vidro de relógio	Sulfato de cobre penta-hidratado Hidróxido de amônio Fenolftaleína Água Enxofre Ferro em pó
Areia	

PROCEDIMENTO:

Montagem e teste dos sistemas

Separação por adsorção

- 1) Coloque uma gota de NH₄OH, duas gotas de fenolftaleína e 3 mL de H₂O em dois tubos de ensaio. Agite bem.
- 2) Faça uma filtração simples com funil e papel de filtro da solução contida em um dos tubos colhendo o filtrado em um tubo seco. Observe.
- 3) No outro tubo, adicione 1 medida de carvão ativado e agite e Observe. Filtre e recolha o filtrado em outro tubo seco.
- 4) Observe e compare os resultados obtidos nos dois tubos.

Dissolução fracionada

- 1) Misture cerca de 6 g de enxofre com 12 g de CuSO₄.5H₂O sólido em um almofariz.
- 2) Triture com o pistilo até obter um pó bem fino.
- 3) Coloque em um béquer uma pequena porção da mistura triturada.
- 4) Adicione água para dissolver o sulfato de cobre.
- 5) Filtre a mistura em um funil comum.
- 6) Deixe o filtrado em ebulição por 5 minutos e observe se a cor se mantém inalterada, comprovando a presença de sulfato de cobre.
- 7) Verifique a constituição do resíduo que ficou no papel de filtro.

Separação magnética

- 1) Coloque 5 g de ferro em pó e 20 g de areia em um vidro de relógio e misture-os.
- 2) Coloque o ímã sobre a mistura. Observe.
- 3) Que fenômeno ocorreu?

Observações:

- 1) O professor deve organizar previamente os materiais e reagentes necessários para o desenvolvimento da atividade.
- 2) Pode ser pedido aos alunos que pesquisem as características e cuidados a serem tomados com as substâncias a serem utilizadas;
- 3) É indicado que o professor peça aos alunos a entrega de um relatório para ajudar no conhecimento das técnicas de desdobramento dos tipos de sistemas.

PRÁTICA 06: ESTUDO DAS LEIS PONDERAIS

OBJETIVOS:

- A) Identificar experimentalmente a Lei da Conservação da Massa proposta por Lavoisier;
- B) Equacionar e resolver problemas, sendo capaz de interpretar resultados numéricos e experimentais
- C) Caracterizar os constituintes de um sistema inicial e final.

MATERIAIS NECESSÁRIOS:

Vidrarias	Reagentes da parte 1	Reagentes da parte 2
Tubo de ensaio	Sulfato cúprico	Cloreto de cálcio
Erlenmeyer de 250 mL	Nitrito de sódio	Ácido sulfúrico

PROCEDIMENTO:

Montagem de reatores (Sistemas fechados)

1) Coloque um tubo de ensaio dentro de um erlenmeyer de 250 mL conforme mostra a figura abaixo;

2) Utilize uma rolha de borracha para fechar o sistema (Cuidado ao fechar o erlenmeyer para que ele não venha se quebrar);

Parte 1 - Sulfato cúprico + Nitrito de sódio → Nitrito cúprico + Sulfato de sódio

- 1) Dentro do tubo de ensaio, colocaremos a solução de sulfato cúprico e no fundo do erlenmeyer a solução de nitrito de sódio, fechando posteriormente com uma rolha, o erlenmeyer;
- 2) Quantifique a massa do sistema, ou seja, a "massa dos reagentes" anote o valor;
- 3) Incline cuidadosamente o erlenmeyer de maneira que o tubo de ensaio derrame realizando o contato entre os reagentes;

4) Após de ocorrida a reação quantifique a massa do sistema novamente, ou seja, a "massa dos produtos", anote o valor.

Parte 2 - Cloreto de cálcio + Ácido sulfúrico → Sulfato de cálcio + Ácido clorídrico

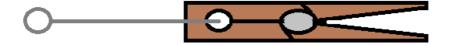
- 1) Dentro do tubo de ensaio, colocaremos a solução de cloreto de cálcio e no fundo do erlenmeyer a solução de ácido sulfúrico, fechando posteriormente com uma rolha, o erlenmeyer;
- 2) Quantifique a massa do sistema, ou seja, a "massa dos reagentes" anote o valor;
- 3) Incline cuidadosamente o erlenmeyer de maneira que o tubo de ensaio derrame realizando o contato entre os reagentes;
- 4) Após de ocorrida a reação quantifique a massa do sistema novamente, ou seja, a "massa dos produtos", anote o valor.

- 1. O professor deve organizar previamente os materiais e reagentes necessários para o desenvolvimento da atividade.
- 2. Pode ser pedido aos alunos que pesquisem as características e cuidados a serem tomados com as substâncias a serem utilizadas;
- 3. É indicado que o professor peça aos alunos uma pesquisa sobre o porquê o sistema reacional deve ser perfeitamente fechado.

PRÁTICA 07: IDENTIFICANDO OS ÁTOMOS ATRAVÉS DA ENERGIA POR ELE LIBERADA.(Teste da chama)

OBJETIVOS:

- A) Identificar a composição elementar de uma substância através da análise visual de sua chama.
- B) Reforçar o conhecimento da estrutura atômica.


MATERIAL NECESSÁRIO:

Materiais	Reagentes
Fio de níquel-cromo (raio de bicicleta <u>~</u> 10 cm)	Cloreto de sódio (sal de cozinha)
Prendedor de roupas	Carbonato de sódio (Barrilha)
Bico de Bunsen	Sulfato de cobre
	Óxido de cálcio (Cal virgem)

PROCEDIMENTO:

Montagem do equipamento de análise

1) Faça uma argola em uma das extremidades do fio de níquel-cromo, como mostra a figura abaixo:

2) Esta argola tema a finalidade de reter uma pequena amostra de substância.

Realizando a análise visual

- 1) Recolha uma pequena amostra de sulfato de cobre na argola e leve-a a chama de uma chama;
- 2) Observe e registre a coloração da chama;
- 3) A seguir lave bem o fio com auxílio de uma esponja de aço e repita a operação para as outras substâncias sempre registrando a coloração da chama. (*cuidado ao lavar a argola pois ele estará aquecida*);

Substância	Coloração
Sulfato de cobre	
Carbonato de sódio	
Cloreto de sódio	
Óxido de cálcio	

- 1. O professor deve organizar previamente os materiais e reagentes necessários para o desenvolvimento da atividade, os reagentes podem ser encontrados em uso doméstico;
- 2. Sugere-se o pedido de um relatório que descreva a coloração da chama característica de cada elemento e qual o motivo daquela coloração.

PRÁTICA 08: CROMATOGRAFIA

OBJETIVOS:

A) Observar a velocidade de difusão de vários indicadores sobre papel.

MATERIAL NECESSÁRIO:

Material	Reagentes
Béquer de 50 mL	Fenolftaleína
Capilar ou micropipeta	Azul de bromotimol
Papel de filtro	Álcool etílico
Tesoura	Amônia

PROCEDIMENTO:

Montagem e teste dos sistemas

- 1) Recorte tiras de papel de filtro.
- 2) Com o auxílio de um capilar aplique sobre a tira de papel uma gota de solução do indicador (fenolftaleína ou azul de bromotimol ou amarelo de alizarina a aproximadamente 1 cm da borda).
- 3) Coloque 2 mL do solvente (solução de álcool etílico) em um béquer e depois insira o papel com a borda aplicada para baixo.

Obs:Inicialmente o nível do solvente deve estar abaixo do spot(ponto de aplicação da solução do indicador)

- 4) Tampe o béquer e deixe o solvente eluir até 1cm do topo retirando então o papel da cuba.
- 5) Marque neste instante com um lápis a posição da frente do solvente, observe a cor do indicador e deixe o papel secar.
- 6) Segure a tira de papel sobre a boca destampada de um frasco contendo NH₃ 15 M e anote a cor associada ao indicador em contato com o vapor de NH₃.
- 7) Repita o procedimento para os outros indicadores.

- 1) O professor deve organizar previamente os materiais e reagentes necessários para o desenvolvimento da atividade.
- 2) Sugere-se o pedido de um relatório que descreva a classificação das técnicas cromatográficas.

PRÁTICA 09: PROPIEDADES PERIÓDICAS

OBJETIVOS

- A) Caracterizar alguns elementos como metal e não metal.
- B) Verificar a sequência dos metais alcalinos terrosos do grupo, através de testes de solubilidade pela formação de precipitados

MATERIAL NECESSÁRIO:

Material	Reagentes
	Ácido sulfúrico
	Nitrato de bário
Tubo de ensaio	Nitrato de cálcio
Pipetas de 10 mL	Nitrato de magnésio
	Nitrato de estrôncio
	Carbonato de sódio
	Oxalato de amônio
	Cromato de potássio

PROCEDIMENTO:

Montagem e teste dos sistemas

- 1) Adicione aproximadamente 1 mL de solução 0,1 M dos sais de nitrato de bário ,cálcio, magnésio e estrôncio, separadamente em quatro tubos de ensaio. A cada tubo acrescente 1 mL de H₂SO₄ 1 M. Agite e observe.
- 2) Repita sua experiência mais três vezes usando no lugar de H₂SO₄ 1 M, cada um dos seguintes reagentes:

1 mL de Na₂CO₃ 1M

1 mL de (NH₄)₂ C₂O₄ 0,25 M

1 mL de K₂CrO₄ 1M

3) Anote com cuidado todas as suas informações na tabela abaixo:

	H ₂ SO ₄ 1 M	Na ₂ CO ₃ 1 M	(NH ₄) ₂ C ₂ O ₄ 0,25 M	K ₂ CrO ₄ 1 M
Ba(NO ₃) ₂				
Ca(NO ₃) ₂				
Mg(NO ₃) ₂				
Sr(NO ₃) ₂				

- 1. O professor deve organizar previamente os materiais e reagentes necessários para o desenvolvimento da atividade.
- 2. Pode ser pedido aos alunos que pesquisem as características e cuidados a serem tomados com as substâncias a serem utilizadas.
- 3- Sugere-se o pedido de um relatório que descreva a solubilidade dos sais inorgânicos.

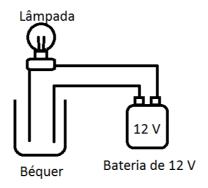
PRÁTICA 10: TESTANDO AS PROPRIEDADES DAS LIGAÇÕES QUÍMICAS

OBJETIVOS:

- A) Observar os pontos de fusão de substâncias iônicas e covalentes.
- B) Observar a condução da corrente elétrica nestas substâncias.

MATERIAL NECESSÁRIO:

Material	Reagentes
Fios de cobre Lampada de 12 V Bateria de 12 V Béqueres Espátula metálica Prendedor de roupas Bico de Bunsen	Cloreto de sódio Parafina sólida Cloreto de potássio Açúcar Água destilada


PROCEDIMENTO:

Teste de pontos de fusão

- 1) Segure uma espátula metálica com um pregador de roupas e recolha uma amostra de cloreto de sódio. Leve cuidadosamente a chama e aguarde cerca de um minuto.
- 2) Anote o observado e repita o mesmo procedimento para a parafina sólida.

Teste da condução de corrente elétrica - Montagem do sistema

1) Monte o esquema representado na figura abaixo:

- 2) Em um béquer a adicione 1 colher de cloreto de potássio em 50 mL de água;
- 3) Agite o béquer para que o sal se dissolva;
- 4) Introduza os eletrodos da lampada dentro da solução e observe se a lampada ascende;
- 5) Repita o mesmo procedimento para o açúcar e anote suas observações.

- 1) O professor deve organizar previamente os materiais e reagentes necessários para o desenvolvimento da atividade, sé possível os sistemas de teste de condução elétrica podem ser montados por uma turma de terceiro ano no conteúdo de circuitos elétricos.
- 2) É indicada que os alunos que pesquisem anteriormente a composição das substâncias utilizadas e quais os tipos de ligações que as formam.
- 3) Sugere-se o pedido de um relatório que descreva o porquê as substâncias iônicas são sólidas a temperatura ambiente e por que a maioria das substâncias covalentes são líquidos ou gases.

PRÁTICA 11: TIPOS DE REAÇÕES QUÍMICAS

OBJETIVOS:

- A) Identificar e diferenciar as reações químicas através de suas características;
- B) Desenvolver a capacidade de observação.
- C) Caracterizar os constituintes de um sistema inicial e final.

MATERIAIS:

Material	Reagentes
Bico de Bunsen	Água destilada
Pinça	Fenolftaleína
Vidro de relogio	Nitrato de Prata
Tubo de ensaio	Ácido clorídrico
Lampada incandescente	Cobre metálico
Fita de magnésio metálico	Sulfato de Alumínio
	Hidróxido de sódio

PROCEDIMENTO:

Reação de síntese

- 1) Acender um bico de gás;
- 2) Com o auxílio de uma pinça, submeter um pedaço de fita de magnésio metálico à chama afastando imediatamente após iniciada a reação;
- 3) Olhando indiretamente (não fixar o olhar diretamente sobre o pedaço de magnésio), observar o que ocorre;
- 4) Recolher a cinza esbranquiçada resultante em um vidro de relógio;
- 5) Adicionar 3 ml de água e duas gotas de fenolftaleína;
- 6) Agitar e observar atentamente o que ocorre.

Reação de decomposição

- 1) Colocar pequena quantidade de nitrato de prata em solução em um tubo de ensaio;
- 2) Adicionar algumas gotas de ácido clorídrico, precipitando o cloreto de prata;
- 3) Submeter o tubo com o precipitado de cloreto de prata à luz solar ou a uma lâmpada intensa;
- 4) Observar atentamente a coloração do precipitado;
- 5) Reações desse tipo são a base do processo fotográfico.

Reação de deslocamento

- 1) Transfira cerca de 1 mL de uma solução de nitrato de prata em um tubo de ensaio;
- 2) Colocar em contato com esta solução um pedaço de cobre metálico;
- 3) Observar atentamente o que ocorre.

Reação de dupla troca

- 1) Adicionar a um tubo de ensaio pequena quantidade de solução de sulfato de alumínio;
- 2) Acrescentar algumas gotas de hidróxido de sódio e observar atentamente;
- 3) Continuar a adição de hidróxido de sódio e observar atentamente o que está ocorrendo.

- 1) O professor deve organizar previamente os materiais e reagentes necessários para o desenvolvimento da atividade.
- 2) Pode ser pedido aos alunos que pesquisem as características e cuidados a serem tomados com as substâncias a serem utilizadas.
- 3) É indicado que o professor peça aos alunos a entrega de um relatório para ajudar na assimilação dos tipos de reações químicas.

PRÁTICA 12: IDENTIFICAÇÃO DE ÁCIDOS E BASES

OBJETIVOS:

- A) Identificar as soluções de caráter ácido, neutro e básico.
- B) Observar a viragem de cor dos indicadores de acordo com a escala de pH.

MATERIAL NECESSÁRIO:

Material	Reagentes
Béqueres de 50 mL	Água destilada
Pipetas de 10 mL	Hidróxido de amônio
	Ácido clorídrico
	Fenolftaleína
	Azul de bromotimol
	Vermelho de metila

PROCEDIMENTO:

Montagem e teste dos sistemas

- 1) Meça 10 ml de água destilada.
- 2) Meça 10 ml de ácido clorídrico 0,1 M.
- 3) Meça 10 ml de hidróxido de amônio 0,1 M.
- 4) Repita as etapas anteriores(duas vezes).
- 5) Adicione 2 gotas de fenolftaleína em cada sistema (1ª Etapa).
- 6) Adicione 2 gotas de azul de bromotimo em cada sistema (2ª Etapa).
- 7) Adicione 2 gotas de vermelho de metila em cada sistema (3ª Etapa).

8) Anote as cores dos sistemas. Tabela a seguir:

Indicadores/Sistemas	Ácido clorídrico	Água destilada	Hidróxido de amônio
Fenolftaleína			
Azul de bromotimol			
Vermelho de metila			

- 1) O professor deve organizar previamente os materiais e reagentes necessários para o desenvolvimento da atividade.
- 2) Pode ser pedido aos alunos que pesquisem as características e cuidados a serem tomados com as substâncias a serem utilizadas.
- 3) Sugere-se o pedido de um relatório para ajudar na assimilação do conteúdo desenvolvido no laboratório.

PRÁTICA 13: IDENTIFICAÇÃO DE ÁCIDOS E BASES UTILIZANDO INDICADORES NATURAIS

OBJETIVOS:

A) Determinar se uma solução é ácida ou básica através do uso de indicadores naturais

MATERIAIS NECESSÁRIOS:

Material	Reagentes
	Flores de hibisco ou folhas de repolho roxo
Béqueres de 500 mL	Suco de limão
Béqueres de 125 mL	Suco de laranja
Tubos de ensaio	Vinagre
Pipetas descartáveis	Leite de magnésia
Funil de vidro	Detergente
Papel de filtro	Solução de sabão
	Água

PROCEDIMENTO:

Preparação da solução indicadora natural

- 1) Em um béquer de 500 mL adicione algumas pétalas de hibisco ou folhas trituradas repolho roxo, adicione água e submeta a aquecimento ato que você perceba o ganho de coloração pela água;
- 2) Filtre a solução e distribua cerca de 50 mL dessa solução para cada bancada

Identificando a acidez e basicidade de soluções através da análise de coloração

1) Identifique seis tubos de ensaio como A, B, C, D, E e F. Adicione a cada as seguintes substâncias:

Tubo A:	5 gotas de suco de limão		
Tubo B:	5 gotas e suco de laranja		
Tubo C:	5 gotas de vinagre		
Tubo D:	5 gotas de solução leite de magnésia		
Tubo E: 5 gotas de detergente			
Tubo F:	5 gotas de solução de sabão		

2) Adicione a cada um desses tubos 1 mL de H_2O destilada e 1 mL de indicador natural. Observe a coloração final e anote na seguinte tabela:

Tubo A:	5 gotas de suco de limão	Coloração final
Tubo B:	5 gotas e suco de laranja	Coloração final:
Tubo C:	5 gotas de vinagre	Coloração final:
Tubo D:	5 gotas de solução de leite de magnésia	Coloração final:
Tubo E:	5 gotas de detergente	Coloração final:
Tubo F:	5 gotas de solução de sabão	Coloração final:

- 1. O professor deve organizar previamente os materiais e reagentes necessários para o desenvolvimento da atividade, procure minimizar os gastos de materiais alimentícios.
- 2. É indicada que professor peça aos alunos que pesquisem o comportamento dos ácidos e das bases frente a presença de indicadores e como os indicadores funcionam.
- 3. Sugere-se o pedido de um relatório para ajudar na assimilação do conteúdo desenvolvido no laboratório.

PRÁTICA 14: PREPARO DE UM INDICADOR DE PH UTILIZANDO BETERRABA.

OBJETIVOS:

A) Extrair corante da beterraba e utilizá-lo como indicador.

MATERIAIS NECESSÁRIOS:

Vidrarias e equipamentos	Reagentes	
Béqueres (50 e 250mL)	Beterraba	
Suporte universal e argola para funil	Álcool comercial (etanol)	
Funil analítico	Solução aquosa de HCl 5%(v/v)	
Papel de filtro	Solução aquosa de NaOH 5%(m/v)	
Tubos de ensaio	Água destilada	
Bastão de vidro	Água sanitária	
Balança analítica	Хатри	
Espátula	Vinagre	
Provetas (50 ou 100mL)		
Pipetas de 10 mL		
Pipetador ou pêra		

PROCEDIMENTO:

Extração

- 1) Pese 25 g de beterraba processada e transfira para o béquer de 250 mL
- 2) Adicione 50 mL de etanol.
- 3) misture bem com o bastão de vidro e aguarde por 15 minutos.
- 4) Filtre para a obtenção do extrato.

Teste do indicador

- 1) Numere três tubos de ensaio
- 2) Adiciona 1 mL do extrato filtrado em cada tubo de ensaio.
- 3) Adicione 1mL da solução de HCl no tubo 1

- 4) adicione 1 mL de água destilada no tubo 2
- 5) Adicione 1 mL da solução de NaOH no tubo 3
- 6) Agite todos os tubos e observe a cor do indicador nos três tubos e anote os resultados na tabela a seguir:

		COR OBSERVADA	
TUBO 1	Extrato/ HCl		
TUBO 2	Extrato/ água		
TUBO 3	Extrato/ NaOH		

Teste do pH de materiais do uso cotidiano

- 1) Adicione 1 mL do extrato filtrado a três tubos de ensaio;
- 2) Adicione nos três tubos respectivamente:1 mL de vinagre, mL de água sanitária e 1 mL xampu;
- 3) Agite bem os tubos e observe as cores e compare-as com os tubos da parte anterior da pratica. Anote os resultados na tabela a seguir:

	COR OBSERVADA
Extrato + vinagre	
Extrato + água sanitária	
Extrato + xampu	

- 1. O professor deve organizar previamente os materiais e reagentes necessários para o desenvolvimento da atividade;
- 2. É indicado que o professor peça aos alunos a entrega de um relatório para ajudar na assimilação do conteúdo referente à prática realizada.

PRÁTICA 15: PREPARAÇÃO DE SAIS E ÓXIDOS

OBJETIVOS:

A) Assimilar os conceitos e propriedades dos sais e óxidos

MATERIAIS NECESSÁRIOS

Material	Reagentes
Pinça metálica Tubos de ensaio Bico de Bunsen Cadinho de porcelana	Solução de ácido clorídrico diluído Solução de hidróxido de magnésio diluído Magnésio em fita

PROCEDIMENTO:

Preparação de um sal

- 1) Em um tubo de ensaio adicione 20 mL de HCl diluído e adicione também 20 mL de NaOH diluído;
- 2) Agite o tubo para que a reação ocorra por completo;
- 3) Com uma pipeta descartável retire 5 mL da solução e coloque em um cadinho de porcelana;
- 4) Submeta o cadinho ao aquecimento de uma chama e espere a solução evaporar;
- 5) Após o resfriamento do cadinho, raspe o fundo dom uma espátula metálica;
- 6) Tente identificar qual substância é a formada no fundo do cadinho;

Preparação de um óxido

- 1) Com uma pinça metálica segure um pedaço de fita de magnésio metálico e submeta a chama;
- 2) Cuidado com a luz liberada na reação.
- 3) Tente identificar qual substância é formada na reação.

Observações:

1. O professor deve organizar previamente os materiais e reagentes necessários para o desenvolvimento da atividade, o ácido e a base utilizados devem ambos estar diluídos.

- 2. É indicada que professor peça aos alunos que pesquisem as características e cuidados que devem ser tomados na manipulação de cada um dos reagentes a serem utilizados.
- 3. Sugere-se o pedido de um trabalho no qual o aluno disponibilize de forma tabelada seus resultados para ajudar na assimilação do conteúdo desenvolvido no laboratório.

PRÁTICA 16: REAÇÕES REDOX (REDUÇÃO-OXIDAÇÃO)

OBJETIVOS:

A) Realizar reações de oxi-redução e esquematizar as equações químicas correspondentes a cada reação.

MATERIAIS:

Materiais	Reagentes
Tubos de ensaio	Solução de ácido nítrico diluído
Bastão de vidro	Fio de cobre
Vidro de relógio	Permanganato de potássio
	Solução de ácido Sulfúrico diluído

PROCEDIMENTO:

Reação 1:

Cobre + Ácido Nítrico → Nitrato de Cobre II + Água + Óxido de Nitrogênio(IV)

- 1) Cortar um pequeno pedaço de fio de cobre (aproximadamente 1 cm).
- 2) Colocar o fio em um tubo de ensaio.
- 3) Adicionar sobre ele 2 mL de ácido nítrico concentrado.
- 4) Observar atentamente a cor da solução e do gás desprendido.

Reação 2:

- 1) Colocar pequena porção (alguns cristais) de permanganato de potássio em um vidro de relógio.
- 2) Colocar ao lado do permanganato uma ou duas gotas de ácido sulfúrico concentrado.
- 3) Preparar em outro vidro de relógio um pedaço de algodão, umedecido com álcool

- 4) Usando a ponta de um bastão de vidro, misturar o ácido sulfúrico ao permanganato.
- 5) Encostar a ponta do bastão (mistura permanganato+ácido) no algodão com álcool
- 6) Observar atentamente o que ocorre.

- 1. O professor deve organizar previamente os materiais e reagentes necessários para o desenvolvimento da atividade.
- 2. Pode ser pedido aos alunos que pesquisem as características e cuidados a serem tomados com as substâncias a serem utilizadas;
- 3. Muito cuidado com a produção de NO₂ devido a toxidade dessa substância ao organismo.
- 4. Na reação 2 deve-se estar atento a liberação de calor proporcionada pela reação na forma de "fogo".
- 5. É indicado que o professor peça aos alunos a entrega de um relatório que descreva o que ocorre durante as reações desenvolvidas, o número de oxidação de cada elemento, quais são agentes oxidantes e quais são agentes redutores.

2º Ano do Ensino Médio Físico Química

ROTEIRO PARA AULAS EXPERIMENTAIS DO 2º ANO DO ENSINO MÉDIO LABORATÓRIO DE QUÍMICA

PRÁTICA 01: ANÁLISE DOS MECANISMOS DE DISSOLUÇÃO E COEFICIENTE DE SOLUBILIDADE

OBJETIVOS:

- A) Classificar as substâncias como polares ou apolares utilizando a análise de solubilidade;
- B) Identificar os sistemas quanto o seu grau de saturação;
- C) Acompanhar a variação do coeficiente de solubilidade do cloreto de sódio (NaCl) em função da temperatura.

MATERIAIS:

Equipamentos	Reagentes
	Cloreto de sódio Água
Tubos de ensaio	Parafina Sólida Etanol
	Óleo de soja Água

PROCEDIMENTO:

Parte 1 - Classificando as substâncias quanto a polaridade

- 1) No tubo de ensaio A, adicione uma pitada de cloreto de sódio, no tubo B uma pitada de parafina sólida, no tubo C cinco gotas de etanol e no tubo D cinco gotas de óleo de soja, agora em cada um desses tubos adicione 5 mL de *água*.
- 2) Observe o ocorrido e anote.

Tubo A	Tubo B	Tubo C	Tudo D
NaCl + H ₂ O	Parafina sólida + H ₂ O	Etanol + H ₂ O	Óleo de soja + H ₂ O

Parte 2 - Classificando os sistemas quanto a saturação

- 1) Adicione 10 mL de água nos tubo de ensaio E, F e G Após isso no tubo E adicione 1 g de cloreto de sódio, no tubo F adicione 3,5 g de cloreto de sódio e no tubo G adicione 5 g de cloreto de sódio. Agite cuidadosamente os tubos tentando dissolver a maior quantidade de sal possível se necessário utilize um bastão de vidro. Observe e anote o que você vê nos sistemas.
- 2) pegue mais 0,5 g de NaCl e adicione no tubo E. Observe e anote o que ocorre.

Tubo E	Tubo F	Tubo G
10 mL de H ₂ O + 1 g de NaCl	$10 \text{ mL de H}_2\text{O} + 3,5 \text{ g de NaCl}$	10 mL de H ₂ O + 5 g de NaCl

- 1. O professor deve organizar previamente os materiais e reagentes necessários para o desenvolvimento da atividade.
- 2. Pode ser pedido aos alunos que pesquisem as características, fórmulas estruturais e cuidados a serem tomados com as substâncias a serem utilizadas.
- 3. É indicado que o professor peça aos alunos uma pesquisa sobre o porquê algumas substâncias se dissolveram e outras não.

PRÁTICA 02: SOLUÇÕES SUPERSATURADAS

OBJETIVOS:

- A) Verificar a instabilidade das soluções supersaturadas.
- B) Observar as condições que mantém um sistema supersaturado.

MATERIAIS NECESSÁRIOS:

Vidrarias	Substâncias	
Béquer de 250 mL	Água destilada	
Bastão de vidro	Sal de cozinha (NaCl)	
Espátula	Açúcar (Sacarose)	
Termômetro	Coca-cola	
Fonte de calor	Areia	

PROCEDIMENTO 1:

- 1) Sabendo que o coeficiente de solubilidade do NaCl é 37,3 g em 100 g de água (60° C), pese 37,0 g de NaCl e dissolva em 100 g de água a 60° C (Solução insaturada).
- 2) Agite o sistema até a dissolução do soluto.
- 3) Deixe o sistema resfriar em repouso absoluto até 20° C (Solução supersaturada).

Obs: A massa de sal está 1,0 g acima do coeficiente de solubilidade

- 4) Acrescente ao sistema um cristal de NaCl (Germen de precipitação).
- 5) Observe a precipitação do NaCl que estava em excesso, a 20° C.

Comente o resultado.

PROCEDIMENTO 2:

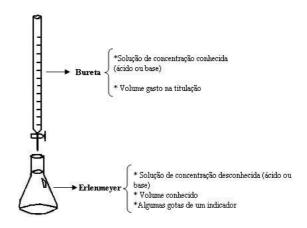
- 1) Reserve 3 béqueres de 250 mL.
- 2) Coloque 100 mL de coca-cola em cada um.
- 3) Adicione uma medida de espátula de açúcar.
- 4) Adicione uma medida de espátula de sal de cozinha.
- 5) Adicione uma medida de espátula de areia.
- 6) Observe os resultados.
- 7) Os sistemas são supersaturados?

- 1. O professor deve organizar previamente os materiais e reagentes necessários para o desenvolvimento da atividade, procurando dividir a turma em equipes de forma a não haver muito desperdício de material.
- 2. É indicada que os alunos que pesquisem anteriormente o que é uma solução supersaturada e qual o coeficiente de solubilidade do açúcar na água.
- **3.** Sugere-se o pedido de um relatório para ajudar na assimilação do conteúdo desenvolvido no laboratório.

PRÁTICA 03: ANÁLISE VOLUMÉTRICA: TITULAÇÃO

OBJETIVO:

A) Identificar o teor de ácido clorídrico presente no ácido clorídrico comercial (ácido muriático).


MATERIAIS NECESSÁRIOS:

Vidrarias	Reagentes
Bureta de 10 mL	Solução de ácido muriático
Erlenmeyer de 125 mL	Solução de Hidróxido de sódio a 0,5 M

PROCEDIMENTO:

Identificando a concentração de ácido clorídrico no ácido muriático

1) Observe a figura abaixo e monte um sistema para titulação volumétrica;

- 2) Zere uma bureta de 10 mL adicionando uma solução de NaOH a 0,5 M;
- 3) Em um erlenmeyer adicione 60 mL da solução de ácido muriático comercial de concentração desconhecida;
- 4) Adicione 2 gotas de fenolftaleína ao ácido no erlenmeyer;
- 5) Inicie a titulação no ácido realizando a adição do NaOH gota a gota no erlenmeyer mantendo este sempre em leve agitação. No momento em que a solução ficar violeta feche a torneira da bureta e anote o volume de NaOH utilizado para neutralizar o HCl presente no ácido muriático.

olume de NaOH utilizado:	
aliime de NaCIH iitilizada:	

- 1. O professor deve organizar previamente os materiais e reagentes necessários para o desenvolvimento da atividade, o ácido e a base dispostos ao aluno devem estar diluídos.
- 2. É indicada que os alunos que pesquisem anteriormente as características, fórmulas estruturais e cuidados a serem tomados com as substâncias a serem utilizadas.
- 3. Sugere-se o pedido de um relatório para ajudar na assimilação do conteúdo desenvolvido no laboratório.

PRÁTICA 04: PREPARAÇÃO E PADRONIZAÇÃO DO NaOH 0,1M

OBJETIVOS:

- A) Preparar soluções alcalinas
- B) Verificar a concentração real das soluções preparadas

MATERIAIS NECESSÁRIOS:

Vidrarias		Reagentes	
Pipeta de 10 mL Bureta de 50 mL	Balão volumétrico Espátula	Água Hidróxido de sódio	
Erlenmeyerde125mL Balão volumétrico de 50 mL	Balança semi- analítica	Biftalato de potássio Fenolftaleína	

PROCEDIMENTO:

Preparação de NaOH 1 M e 0,1 M

- 1) Aplicando a formula, pese a quantidade de NaOH necessária para preparar 25 mL de solução 1 M.
- 2) Dissolva esta amostra na menor quantidade possível de água e passe para um balão volumétrico de 25 mL, completando com água até o volume desejado. Agite bem a solução.
- 3) Prepare 50 mL de NaOH 0,1 M a partir de NaOH 1M

Obs:Transfira para recipiente a ser indicado pelo professor, o restante da solução de NaOH 1M.

Padronização do NaOH 0,1M

- 1) Pese um barquinho de papel 0,2 g de biftalato de potássio (C₆H₄COOKCOOH).
- 2) Transfira esta amostra cuidadosamente para um erlenmeyer.
- 3) Dissolva em água o biftalato de potássio.
- 4) Carregue a bureta com solução 0,1 M de NaOH 0,1 M preparada por você.

5) Determine o volume da solução de NaOH 0,1M necessário para mudar a coloração do indicador.

- 1. O professor deve organizar previamente os materiais e reagentes necessários para o desenvolvimento da atividade.
- 2. Pode ser pedido aos alunos que pesquisem as características e cuidados a serem tomados com as substâncias a serem utilizadas.
- 3. É indicado que o professor peça aos alunos a entrega de um relatório para ajudar na assimilação das técnicas de titulação.

PRÁTICA 05: PREPARAÇÃO E PADRONIZAÇÃO DO HCI 0,1 M

OBJETIVOS:

- A) Preparar soluções ácidas
- B) Verificar a concentração real das soluções preparadas

MATERIAIS NECESSÁRIOS:

Vidrarias e equipamentos		Reagentes
Pipeta de 10 mL	Espátula	Água
Bureta de 50 mL	Balança semi-analítica	Hidróxido de sódio
Erlenmeyer de 125 mL	Pêra	Ácido clorídrico
Balão volumétrico de 50		Fenolftaleína
mL		

PROCEDIMENTO:

Preparação do HCl 0,1M

- 1) Adicione a um balão de 50 mL aproximadamente 25 mL de água destilada e dirija-se a capela.
- 2) Meça com o auxílio de uma pêra de borracha, o volume de HCl concentrado necessário para preparar 50 mL de solução 0,1 M e adicione a seguir esta quantidade ao balão de 50 mL.
- 3) Complete com água até a aferição do balão e agite bem a solução.

Padronização do HCl

- 1) Meça 10 mL da solução de HCl preparada por você e transfira para um erlenmeyer. Adicione algumas gotas de fenolftaleína.
- 2) Verifique a leitura do volume da bureta contendo NaOH 0,1 M. Anote este valor inicial.
- 3) Determine o volume da solução de NaOH necessário para mudar a cor do indicador.

- 1. O professor deve organizar previamente os materiais e reagentes necessários para o desenvolvimento da atividade,
- 2. Pode ser pedido aos alunos que pesquisem as características e cuidados a serem tomados com as substâncias a serem utilizadas;
- 3. É indicado que o professor peça aos alunos a entrega de um relatório para ajudar na assimilação das técnicas de titulação.

PRÁTICA 06: DETERMINAÇÃO DA ACIDEZ DO LEITE PASTEURIZADO OBJETIVOS:

- A) Determinar qualitativamente a acidez de várias amostras de leite, empregando o processo do álcool etílico (Etanol).
- B) Determinar quantitativamente a acidez de várias amostras de leite em graus "DÔRNIC" (um grau DÔRNIC equivale a $0.1 \, \text{mL}$ de NaOH $0.1 \, \text{N} \equiv 0.1 \, \text{M}$).
- C) Caracterizar o leite no seu aspecto de qualidade para consumo humano.

MATERIAIS NECESSÁRIOS:

Vidrarias	Reagentes
Tubo de ensaio	Álcool etílico 72° GL
Pipeta	Hidróxido de sódio 0,1M
Erlenmeyer	Leite pasteurizado
Bureta	Fenolftaleína

PROCEDIMENTO:

Teste qualitativo

- 1) Dispondo de tubos de ensaio, colocar 2 mL de cada amostra de leite em tubos diferentes.
- 2) Adicionar 2 mL de álcool etílico em cada tubo.
- 3) Homogeneizar e observar.
- 4) Observe a tabela comparativa:

OBSERVAÇÃO	SITUAÇÃO DE LEITE
Sem coagulação	Bom (não ácido)
Coagulação fina	Baixa resistência (pouco ácido)
Coagulação grossa	Sem resistência (ácido)

Teste quantitativo

1) Para as amostras de leite disponíveis em sua bancada, determine quantitativamente o teor de ácido, usando a técnica de titulação, o indicador específico e uma solução de NaOH 0,1M.

- 1. O professor deve organizar previamente os materiais e reagentes necessários para o desenvolvimento da atividade.
- 2 .Pode ser pedido aos alunos que pesquisem as características e cuidados a serem tomados com as substâncias a serem utilizadas.
- 3. É indicado que o professor peça aos alunos a entrega de um relatório para ajudar a entender os processos de fermentação/acidez em lacticínios.

PRÁTICA 07: ANÁLISE FÍSICO-QUÍMICA DAS ÁGUAS PARA POTABILIDADE

OBJETIVO:

1) Analisar quimicamente a água para verificar se é potável para o consumo humano.

PROCEDIMENTO:

Determinação de pH.

- 1) Tome uma alíquota de 50 mL de água;
- 2) Em seguida, introduza a tira de papel pH universal na amostra de água. Anote o pH da água.

Determinação de cloreto

- 1) Tome uma alíquota de 50 mL de água.
- 2) Adicione 1 ml de nitrato de prata (AgNO₃ 0,1M).
- 3) Observe a tabela a seguir e compare o resultado:

ASPECTO	RESULTADO
Se ficar muito leitoso	Presença acentuada de cloreto
Se ficar levemente leitoso	Traços de cloreto
Se permanecer incolor	Ausência de cloreto

Determinação de nitrito

Tome uma alíquota de 50 mL da amostra de água, transfira para um erlenmeyer de 250 mL adicione 1 mL de ácido sulfanílico, adicionar 1 mL de acetato de alfanaftilamina, agite e deixe em repouso por 15 minutos.

Apecto	Resultado
Se desenvolver uma cor vermelha	Presença acentuada de nitrito
Se desenvolver uma cor rosada	Traços de nitrito
Se desenvolver uma cor levemente rosada	Traços de nitrito
Se permanecer incolor	Ausencia de nitrito

- 1) O professor deve organizar previamente os materiais e reagentes necessários para o desenvolvimento da atividade.
- 2) Pode ser pedido aos alunos que pesquisem as características e cuidados a serem tomados com as substâncias a serem utilizadas;
- 3) É indicado que o professor peça aos alunos a entrega de um relatório para ajudar na assimilação dos tipos de reações químicas.

PRÁTICA 08: CONTROLE DE QUALIDADE DE MEDICAMENTO (ASPIRINA). OBJETIVOS:

A) Determinar o teor de ácido acetil-salicílico (AAS) na aspirina.

MATERIAIS NECESSÁRIOS:

Vidrarias	Reagentes
Almofariz e pistilo	Álcool etílico
Erlenmeyer 250 mL	Solução de NaOH 0,1M
Bastão de vidro	Azul de bromotimol 0,5%
Bureta de 5 0mL	Aspirina
Béquer	

PROCEDIMENTO:

- 1) Pese a amostra (aspirina) e triture-a com o auxílio de almofariz e pistilo. Transfira a amostra para um erlenmeyer de 250 mL e dilua com cerca de 20 mL de álcool etílico, limpando bem o almofariz com bastão de vidro;
- 2) Encha cuidadosamente a bureta com solução de hidróxido de sódio 0,1M;
- 3) Coloque o béquer sob a bureta. Abra e feche rapidamente a torneira, para que a solução encha totalmente o bico da torneira. Em seguida abra a torneira para escoar o excesso da solução de hidróxido de sódio e fazer com que a parte inferior do menisco da solução contida na bureta fique na altura do traço 0 (zero) da mesma.
- 4) Adicione algumas gotas de indicador azul de bromotimol à amostra contida no erlenmeyer e titule, gota a gota ,até acontecer a mudança de cor de amarela para azul.
- 5 Anote o volume gasto de NaOH 0,1M na titulação e calcule o teor de ácido acetil-salicílico presente na aspirina.

- 1. O professor deve organizar previamente os materiais e reagentes necessários para o desenvolvimento da atividade.
- 2. Pode ser pedido aos alunos que pesquisem as características e cuidados a serem tomados utilizadas.

3.	É indic			aos	alunos	a	entrega	de	um	relatório	para	ajudar	na

PRÁTICA 09: PROPRIEDADES COLIGATIVAS: EBULIOSCOPIA E CRIOSCOPIA

OBJETIVOS:

- A) Observar a elevação da temperatura de ebulição do solvente por adição de soluto.
- B) Observar o abaixamento da temperatura de congelamento do solvente por adição de soluto.

MATERIAIS NECESSÁRIOS:

Vidrarias	Substâcias
Béqueres de 250 mL	Água destilada
Termômetro (-10° a 100° C)	Gelo
Bastão de vidro	Sal de cozinha(Cloreto de sódio)
Fonte de calor	
Espátula	

PROCEDIMENTO:

Ebulioscopia:

- 1) Coloque 100 mL de água destilada em um béquer.
- 2) Aqueça o sistema até atingir 100° C.
- 3) Adicione com uma espátula 2 a 3 medidas de sal e agite.
- 4) Verifique o aumento na temperatura de ebulição.
- 5) Registre a maior temperatura acima de 100° C.

Crioscopia:

- 1) Coloque gelo triturado em um béquer e adicione água.
- 2) Agite o sistema vigorosamente.
- 3) Verifique a temperatura.
- 4) Adicione com uma espátula várias medidas de sal. Agite vigorosamente o sistema.
- 5) Verifique a redução da temperatura de congelamento.
- 6) Registre a menor temperatura abaixo de 0° C.

- 1. O professor deve organizar previamente os materiais e reagentes necessários para o desenvolvimento da atividade, procurando dividir a turma em equipes de forma a não haver muito desperdício de material.
- 2. É indicado que os alunos pesquisem anteriormente qual a influência de um soluto iônico nas propriedades coligativas de um solvente específico. .
- 3. Sugere-se o pedido de um relatório para ajudar na assimilação do conteúdo desenvolvido no laboratório.

PRÁTICA 10: PROPRIEDADES COLIGATIVAS: OSMOSE

OBJETIVOS:

- A) Observar o processo de osmose através da membrana de um ovo.
- B) Entender a funcionalidade deste processo no nosso organismo.

MATERIAIS:

Parte 1	Parte 2
Açúcar	Vinagre
Água quente	Ovo
Béquer de 500 mL	Béquer de 100 mL

PROCEDIMENTO:

Parte 1 - Preparo da solução

1) Solução supersaturada de açúcar - adicione 250 g de açúcar a cerca de 250 mL de água quente e continue aquecendo e mexendo até que a dissolução seja completa. A solução ficará amarelada e viscosa

Parte 2 – A osmose através de uma membrana celular

- 1) Lave um ovo somente com água e coloque-o num béquer contendo cerca de 250 mL de vinagre.
- 2) Durante 5 a 10 minutos, observe o que acontece. Ocorre alguma reação química? Anote todas as suas observações.
- 3) Deixe o sistema em repouso por pelo menos um dia. Ao lado, deixe o outro ovo para comparação.
- 4) Após um dia ou mais, observe se houve alterações no sistema. Quais? Compare o tamanho do ovo mergulhado no vinagre com o do outro ovo.
- 5) Com cuidado, para não romper a membrana do ovo, retire o vinagre do béquer segurando o ovo. Observe se o ovo ainda tem casca. A seguir, lave-o apenas com água, recoloque-o no béquer e adicione cerca de 250 mL da solução fria supersaturada de açúcar. Observe se ocorre alguma reação. O ovo flutua ou fica no fundo do béquer? Deixe o sistema em repouso por pelo menos mais

um dia. Após esse período, retire cuidadosamente o ovo da solução de açúcar, lave-o e compare seu tamanho com o do outro ovo.

- 1) O professor deve organizar previamente os materiais e reagentes necessários para o desenvolvimento da atividade, procurando dividir a turma em equipes de forma a não haver muito desperdício de material;
- 2) É indicada que os alunos que pesquisem anteriormente o que é uma membrana semipermeável e qual o coeficiente de solubilidade do açúcar na água.
- 3) Sugere-se o pedido de um relatório para ajudar na assimilação do conteúdo desenvolvido no laboratório, tentando enfocar este processo no organismo humano.

PRÁTICA 11: TERMOQUÍMICA: ENTALPIA OU CALOR DE NEUTRALIZAÇÃO

OBJETIVOS:

A) Determinar a entalpia de uma reação química que envolve uma neutralização de um ácido com uma base.

MATERIAIS:

Equipamentos	Reagentes
Balança	Solução de ácido clorídrico a 1,0 M
Béquer	Solução de hidróxido de sódio a 1,0 M
Papel de jornal	
Termômetro	
Erlenmeyer	
Bastão de vidro	

PROCEDIMENTO:

Prenarando o reator

Temperatura média: _____

тера	Tando o reator
1)	Utilizando uma balança de precisão, determine a massa de um béquer limpo.
Massa	do béquer:
2)	Isole o béquer que será usado como reator com papel de jornal.
Deter	minando a temperatura inicial do sistema reacional
1)	Insira cuidadosamente o termômetro no erlenmeyer que contém 10 mL de HCl 1,0 M. Após
dois n	ninutos anote a temperatura mostrada no termômetro.
Tempe	eratura do HCl:
2)	Insira cuidadosamente o termômetro no erlenmeyer que contém 10 mL de NaOH 1,0 M.
Após	dois minutos anote a temperatura mostrada no termômetro.
Tempe	eratura do NaOH:
3)	A média aritmética das temperaturas do ácido e da base será a temperatura inicial do
sistem	a.

Realizando a reação

1) Adicione o HCl 1,0 M e o NaOH 1,0 M no calorímetro mantendo o sistema em levíssima agitação com um bastão de vidro. Fique atento a marcação da temperatura do termômetro. Após cinco minutos registre a maior temperatura observada.

Maior	temperatura	observada:	

Observações:

- 1. O professor deve organizar previamente os materiais e reagentes necessários para o desenvolvimento da atividade, o ácido e a base utilizados devem ambos estar diluídos.
- 2. É indicada que professor demonstre aos alunos qual o artifício matemático utilizado para o desenvolvimento da atividade conforme mostra abaixo:

$$Qr = (m_{s_{-}}C_{s} + m_{v_{-}}C_{v}) \cdot \Delta T$$

$$Onde:$$

$$m_{s}: \quad Massa da solução$$

$$m_{v}: \quad Massa do recipiente$$

$$C_{s}: \quad Calor específico da solução$$

$$C_{v}: \quad Calor específico do recipiente$$

$$\Delta T: \quad Variação de temperatura$$

$$Dados adicionais$$

$$Calor específico do vidro: 0,753 J/g. °C$$

$$Calor específico do vidro: 0,753 J/g. °C$$

$$Calor específico da água: 4,184 J/g. °C$$

$$Densidade da solução: ~1,0g/cm3$$

3. Sugere-se o pedido de um relatório para ajudar na assimilação do conteúdo desenvolvido no laboratório.

PRÁTICA 12: CINÉTICA QUÍMICA

OBJETIVOS:

- A) Verificar a influência da temperatura na velocidade de uma reação química.
- B) Verificar a influência da superfície de contato na velocidade de uma reação química.

MATERIAL NECESSÁRIO:

Material	Reagentes
Béqueres de 100mL	Água destilada
Proveta de 100mL	Comprimidos efervescentes
Cronômetro	

PROCEDIMENTO:

- 1) Reserve 6 béqueres de 100mL.
- 2) Coloque nos 3 primeiros béqueres 60 mL de água quente, 60mL água na temperatura ambiente e 60 mL de água gelada.
- 3) Coloque um comprimido efervescente no béquer de água quente. Marque o tempo de consumo total do comprimido.
- 4) Repita o procedimento com os outros 2 comprimidos: Um na água à temperatura ambiente, e outro na água gelada.
- 5) Marque o tempo de consumo total dos comprimidos.
- 6) Repita todo procedimento, agora utilizando comprimidos triturados.
- 7) Observe o ocorrido e preencha duas tabelas. Modelo a seguir:

BÉQUER COM ÁGUA	TEMPO DE CONSUMO DO COMPRIMIDO
Quente	
Temperatura ambiente	
Gelada	

- 1. O professor deve organizar previamente os materiais e reagentes necessários para o desenvolvimento da atividade.
- 2. É indicado que o professor peça aos alunos a entrega de um relatório para ajudar na assimilação dos fatores que influenciam na cinética química.

PRÁTICA 13: VELOCIDADE DA REAÇÃO DE DESCOLORAMENTO DO PERMANGANATO DE POTÁSSIO (KMNO₄)

OBJETIVOS:

- A) Traçar gráficos demonstrativos de fatores que afetam a velocidade das reações químicas.
- B) Estabelecer representações químicas e a equação da velocidade da reação.
- C) Calcular as concentrações de reagentes e produtos antes e depois dos processos químicos ocorrerem.

MATERIAIS:

Equipamentos	Reagentes		
Béquer	Ácido oxálico 0,5 M		
Termômetro	Ácido clorídrico 0,5 M		
Cronômetro	Água		
	Permanganato de potássio a 0,04 M		

PROCEDIMENTO:

Velocidade da reação em função da temperatura ambiente

- 1) No béquer A, adicione 5 mL de HCl 0.5 M com 5 mL de ácido oxálico 0.5 M e 100 mL de H_2O destilada;
- 2) Identifique a temperatura da mistura usando um termômetro, anote este valor na tabela no fim da página;
- 3) Adicione 4 mL de KMnO₄ a 0,04 M agitando o sistema cuidadosamente e inicie o cronômetro simultaneamente:
- 4) Marque o tempo decorrido até o descoramento total da solução, não se esqueça de registrar o tempo na tabela.

Velocidade da reação a 40°C

- 1) No béquer B, adicione 5 mL de HCl 0.5 M com 5 mL de ácido oxálico 0.5 M e 100 mL de H_2O destilada.
- 2) Aqueça cuidadosamente a solução controlando para que a temperatura não passe de 40°C.

- 3) Adicione 4 mL de KMnO₄ a 0,04 M agitando o sistema cuidadosamente e inicie o cronômetro simultaneamente.
- 4) Marque o tempo decorrido até o descoramento total da solução, não se esqueça de registrar o tempo na tabela.

Velocidade da reação a 60°C

- 1) No béquer C, adicione 5 mL de HCl 0,5 M com 5 mL de ácido oxálico 0,5 M e 100 mL de H₂O destilada.
- 2) Aqueça cuidadosamente a solução controlando para que a temperatura não passe de 60°C.
- 3) Adicione 4 mL de KMnO4 a 0,04 M agitando o sistema cuidadosamente e inicie o cronômetro simultaneamente.
- 4) Marque o tempo decorrido até o descoramento total da solução, não se esqueça de registrar o tempo na tabela a seguir:

	Béquer A	Béquer B	Béquer C
Temperatura			
Tempo			

- 1. O professor deve organizar previamente os materiais e reagentes necessários para o desenvolvimento da atividade.
- 2. É indicado que o professor peça aos alunos a entrega de um relatório para ajudar na assimilação dos tipos de reações químicas.

PRÁTICA 14: ÁCIDOS E BASES E O EQUILÍBRIO DE LE CHATELIER

OBJETIVOS:

- A) Analisar o equilíbrio químico entre ácidos e bases.
- B) Determinar se uma solução é ácida ou básica através do uso de indicadores.

MATERIAIS NECESSÁRIOS:

Vidrarias	Reagentes
Tubo de ensaio Conta gotas	Solução de ácido vinagre clorídrico Antiácido estomacal Solução de hidróxido Detergente de sódio Solução de sabão Suco de limão Suco de laranja

PROCEDIMENTO:

Preparação da solução indicadora padrão

- 1) Em um tubo de ensaio A adicione 40 mL de H_2O destilada, 5 gotas de HCl concentrado.
- 2) Em um tubo de ensaio B adicione 40 mL de H_2O destilada, 5 gotas de NaOH concentrado.
- 3) Aos dois tubos adicione duas gotas de indicador universal, anote a coloração de cada solução na tabela abaixo:

Tubo A (HCl)	Tubo B (NaOH)
Cor:	Cor:

4) Reserve estas duas soluções na estante de tubos de ensaio.

Identificando o pH de soluções através da análise de coloração

- 1) Identifique seis tubos de ensaio como C, D, E, F, G e H.
- 2) Adicione a cada tubo as seguintes substâncias:

Tubo C:	5 gotas de suco de limão
Tubo D:	5 gotas e <i>suco de laranja</i>
Tubo E:	5 gotas de <i>vinagre</i>
Tubo F:	5 gotas de solução de <i>anti-ácido estomacal</i>
Tubo G:	5 gotas de <i>detergente</i>
Tubo H:	5 gotas de solução de sabão

3) Adicione a cada um desses tubos 15 mL de H₂O destilada e 1 gota de indicador universal. Observe a coloração final e anote na seguinte tabela:

Tubo C:	5 gotas de suco de limão	Coloração final:
Tubo D:	5 gotas e suco de laranja	Coloração final:
Tubo E:	5 gotas de vinagre	Coloração final:
Tubo F:	5 gotas de solução de anti-ácido estomacal	Coloração final:
Tubo G:	5 gotas de detergente	Coloração final:
Tubo H:	5 gotas de solução de sabão	Coloração final:

Analisando o equilíbrio químico

- 1) Em um tubo de ensaio I adicione 20 mL de água destilada e 1 gota de HCl concentrado.
- 2) Em um tubo de ensaio **J** adicione 20 mL de água destilada e 1 gota de NaOH concentrado.
- 3) Adicione uma gota de indicador no tubo I e anote a coloração observação.
- 4) Adicione uma gota da solução presente no tubo de ensaio **J** dentro do tubo de ensaio **I** e anote a coloração; (repita este procedimento até utilizar toda solução de NaOH)

- 1. O professor deve organizar previamente os materiais e reagentes necessários para o desenvolvimento da atividade, o ácido e a base utilizados devem ambos estar diluídos;
- 2. É indicada que professor peça aos alunos que pesquisem as características e cuidados que devem ser tomados na manipulação de cada um dos reagentes a serem utilizados.
- 3. Sugere-se o pedido de um trabalho no qual o aluno disponibilize de forma tabelada seus resultados para ajudar na assimilação do conteúdo desenvolvido no laboratório.

PRÁTICA 15: CATALISADORES

OBJETIVOS:

- A) Analisar a decomposição da água oxigenada na presença de catalisadores.
- B) Observar a ação inibidora no catalisador.
- C) Observar a influência da temperatura e da superfície de contato na velocidade de decomposição da água oxigenada..

MATERIAIS:

Vidrarias	Reagente e catalisadores	
Tubos de ensaio	Água oxigenada 10 v, 20 v e 30 v	
	Dióxido de Manganês	
	Fígado fresco (Catalase)	
	Batata picada (Amido)	

PROCEDIMENTO:

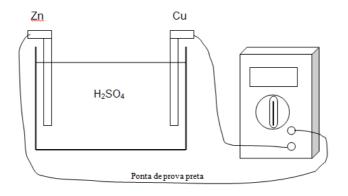
- 1) Por volumes iguais de água oxigenada da mesma concentração em quatro tubos de ensaio.
- 2) Adicionar massas iguais dos três catalisadores sugeridos, um em cada tubo, deixando um deles sem catalisador.
- 3) Observar a eficiência dos catalisadores na decomposição da água oxigenada.
- 4) Acrescentar em outros dois tubos de ensaio massas iguais de um mesmo catalisador, subdividindo em fragmentos diferentes para verificar a influência da superfície de contato.
- 5) Colocar em mais dois tubos de ensaio, idêntica quantidade de um catalisador escolhido, porém em temperaturas diferentes.
- 7) Um dos tubos pode permanecer em temperatura ambiente, enquanto o outro deve ser resfriado em um refrigerador antes da introdução dos catalisadores.
- 8) Colocar em outro tubo de ensaio dióxido de manganês, algumas gotas de sulfato de cobre e água oxigenada 30 v. Comparar com a etapa 2.
- 9) Mostre a ordem de eficiência dos catalisadores.
- 10) Justifique se o catalisador foi inibido na presença dos íons cobre.

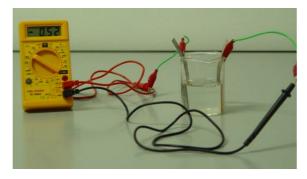
- 1. O professor deve organizar previamente os materiais e reagentes necessários para o desenvolvimento da atividade, o ácido e a base utilizados devem ambos estar diluídos;
- 2. É indicada que professor peça aos alunos que pesquisem as características e cuidados que devem ser tomados na manipulação de cada um dos reagentes a serem utilizados;
- 3. Sugere-se o pedido de um relatório para ajudar na assimilação do conteúdo desenvolvido no laboratório

PRÁTICA 16: PILHA DE DANIEL

OBJETIVOS:

A) Determinar a diferença de potencial elétrico que é gerada entre dois metais diferentes em contato elétrico.


MATERIAIS:


Vidrarias	Reagentes da parte 1	
Béquer	Lamina de zinco	
Garra de jacaré	Lamina de cobre	
Cabo elétrico	Ácido sulfúrico entre 3 M e 6 M	
Multímetro		

PROCEDIMENTO:

Montagem de reatores (Sistemas fechados)

- 1) Prender uma lâmina de zinco na parede de um béquer, usando uma garra de jacaré de um cabo elétrico. Se necessário, entortar a lâmina na sua parte superior para facilitar a fixação.
- 2) Prender uma lâmina de cobre na parede oposta do béquer, usando a garra de jacaré de outro cabo elétrico.
- 3) Conectar a lâmina de cobre à ponta de prova vermelha de um multímetro digital.
- 4) Conectar a lâmina de zinco à ponta de prova preta do multímetro.
- 5) Colocar o multímetro na escala DC Volts, com fundo de escala em 2 volts.
- 6) Adicionar uma solução de ácido sulfúrico (3 a 6 M) ao béquer com as lâminas.
- 8) Observar e registrar a máxima leitura observada no multímetro.
- 9) Valor lido (anote também a unidade) =_____
- 10) Desconecte os fios do multímetro, invertendo as ligações, agora:
- a) O cobre fica ligado à conexão preta do multímetro;
- b) O zinco fica ligado à conexão vermelha do multímetro.
- 11) Observe novamente a leitura máxima observada no multímetro.
- 12) Valor lido (anote também o sinal) = _____

- 1. O professor deve organizar previamente os materiais e reagentes necessários para o desenvolvimento da atividade.
- 2. Pode ser pedido aos alunos que pesquisem as características e cuidados a serem tomados com as substâncias a serem utilizadas;
- 3. É indicado que o professor peça aos alunos a entrega de um relatório que procure citar os módulos dos valores obtidos na leitura direta e com os fios invertidos, bem como o histórico dessa experiência e como ela levou ao desenvolvimento das células elétricas que hoje possuímos.

3º Ano do Ensino Médio: Química Orgânica

PRÁTICA 1: ESTUDO DA GEOMETRIA MOLECULAR NAS CADEIAS CARBÔNICAS OBJETIVOS:

- A) Desenvolver no aluno a habilidade de visualizar a tetravalência dos átomos de carbono e como se organizam no espaço.
- B) Entender a geometria tetraédrica, trigonal planar e linear dos átomos de carbono no encadeamento das estruturas orgânicas.
- C) Identificar as hibridizações do carbono nas estruturas espaciais.

MATERIAL NECESSÁRIO:

Equipamento
KIT de arranjo molecular

PROCEDIMENTO:

Montagem dos arranjos espaciais

- 1) Organize-se em dupla.
- 2) Selecione várias substâncias de cadeia carbônica (Ex: CH₄, C₂H₄, C₆H₆, C₂H₄O, etc).
- 3) Esboce no papel as estruturas a serem montadas, acompanhadas com um conjunto de montagem molecular na quantidade referente as estruturas das substância a serem obtidas.
- 4) Cada dupla deve montar as estruturas moleculares de sua escolha.
- 5) Após montadas, todas as substâncias devem ser expostas em ordem.
- 6) Justifique a geometria molecular de cada carbono em relação a sua hibridização na estrutura montada.

- 1. O professor deve selecionar previamente quais as estruturas mais viáveis ao trabalho dos alunos, já separando no kit de modelagem as proporções necessárias para cada dupla.
- 2. É indicado que professor demonstre aos alunos previamente como se identifica as conformações estruturais das moléculas.
- 3. Sugere-se o pedido de uma apresentação montada por cada grupo para socialização das estruturas montadas.

PRÁTICA 2: DIFERENÇAS ENTRE AS SUBSTÂNCIAS ORGÂNICAS E INORGÂNICAS OBJETIVOS:

A) Observar as diferenças nas propriedades das substâncias orgânicas das inorgânicas, através de teste físico químicos;

MATERIAIS:

ateriais	Reagentes	
Tubos de ensaio	Amido	Etanol
Bico de Bunsen	Parafina Benzina	
Pregador de roupas	Açúcar Papel	
Tampinhas metálicas de refrigerante	Giz	Cal (de construção)
Placas de Petri	Sulfato de Cobre II	
	Óxido de Zinco	

PROCEDIMENTO:

Ação do Calor:

- 1) Colocar pequenas quantidades de amido, parafina, açúcar, giz, sulfato de cobre pentahidratado e óxido de zinco em seis tubos de ensaio, respectivamente.
- 2) Fixar um dos tubos de ensaio na pinça de madeira, submetendo-o à chama do bico de gás.
- 3) Colocar repetidas vezes na chama e retira-lo.
- 4) Anotar as alterações observadas no quadro abaixo.
- 5) Repetir os itens 2, 3 e 4 com os demais tubos, observando e depois anotando no quadro abaixo.

SUBSTÂNCIA ENSAIADA	ALTERAÇÕES OBSERVADAS
Amido	
Parafina	
Açúcar	
Giz	
Sulfato de Cobre II	
Óxido de Zinco	

Combustibilidade:

- 1. Colocar em quatro tampinhas metálicas (de refrigerante, por exemplo) dez gotas de etanol, benzina e água; na última tampa colocar um pedaço de giz.
- 2. Tentar a ignição destas substâncias.
- 3. Observar e depois anotar no quadro a seguir

SUBSTÂNCIA ENSAIADA	ALTERAÇÕES OBSERVADAS E ASPECTO DA CHAMA
Etanol	
Benzina	
Água	
Giz	

Ação do Ácido Sulfúrico Concentrado:

- 1. Colocar em seis placas de Petri diferentes, pequenas quantidades de açúcar, amido, papel, Cal de construção, Giz e Sulfato de Cobre penta-hidratado, respectivamente.
- 2. Pingar algumas gotas de ácido sulfúrico concentrado (d=1,84 g/mL) sobre cada uma das substâncias. Usando ácido menos concentrado, deve-se aquecer a amostra para verificar resultados semelhantes, sendo mais adequada a utilização de tubos de ensaio.
- 3. Observar e depois anotar os efeitos no quadro a seguir:

SUBSTÂNCIA ENSAIADA	ALTERAÇÕES OBSERVADAS
Açúcar	
Amido	
Papel	
Cal (de construção)	
Giz	
Sulfato de Cobre II	

- 1. O professor deve organizar previamente os materiais e reagentes necessários para o desenvolvimento da atividade,
- 2. Pode ser pedido aos alunos que pesquisem as características, fórmulas estruturais e cuidados a serem tomados com as substâncias a serem utilizadas;
- 3. É indicado que o professor peça aos alunos um relatório que explicite quais os comportamentos apresentados por cada substância e interligue com as propriedades das substâncias orgânicas e inorgânicas, identificando cada reagente utilizado.

PRÁTICA 03: ANÁLISE ORGÂNICA ELEMENTAR

OBJETIVOS:

A) Verificar a presença dos elementos químicos organógenos na composição das substâncias analisadas.

MATERIAIS:

Vidrarias	Reagentes	
Tubo de ensaio	Ácido acetilsalicílico	Etanol
Pinça de madeira	Benzina	Benzina
Fogareiro	Sacarose	Cristais de Iodo
Algodão	Óxido de cálcio	Uréia
Cápsula de porcelana	Hidróxido de cálcio	Cal sodada
Vareta de vidro	Ácido Acético	Água destilada
Suporte universal	Clorofórmio	Ácido clorídrico
Béquer		
Papel indicador		

PROCEDIMENTO:

Decomposição por aquecimento (sem chama):

- 1) Colocar num tubo de ensaio um comprimido de AAS (Ácido acetil-salicílico) finamente triturado.
- 2) Fixar o tubo de ensaio numa pinça de madeira.
- 3) Aquecer, submetendo-o à chama do fogareiro.
- 4) Observar e anotar.

Decomposição por queima (com chama):

- 1) Colocar uma porção de algodão numa cápsula de porcelana.
- 2) Incendiar.
- 3) Observar e anotar.
- 4) Colocar 10 gotas de Benzina em outras cápsulas de porcelana.
- 5) Incendiar.
- 6) Observar e anotar.

Decomposição pelo óxido cúprico:

- 1) Pesar aproximadamente 1 g de sacarose.
- 2) Transferir a sacarose para um tubo de ensaio usando uma canaleta de papel.
- 3) Pesar aproximadamente 2 g de CuO, colocando no mesmo tubo.
- 4) Homogeneizar a mistura por agitação.
- 5) Cerrar o tubo com uma rolha atravessada pela vareta de vidro recurvada e fixá-lo num suporte universal (ou usar um tubo com saída lateral).
- 6) Aquecer suavemente o tubo, passando a chama do fogareiro pelo tubo, mantendo a ponta da vareta de vidro mergulhada num béquer com solução límpida de hidróxido de cálcio Ca(OH)₂.
- 7) Deixar borbulhar por algum tempo, observando atentamente as paredes do tubo de ensaio e a solução de Ca(OH)₂.

Item	A	В		C	
Substância	AAS	Algodão Benzina		Solução - Ca(OH) ₂	Tubo - Sacarose
Efeitos					

PESQUISA DO OXIGÊNIO

Colocar em quatro tubos de ensaio,aproximadamente 2 mL de cada uma das substâncias:
 Ácido Acético – Clorofórmio - Etanol - Benzina.

- 2) Adicionar a cada um deles um cristalzinho de Iodo.
- 3) Agitar e observar.

SUBSTÂNCIA	ÁCIDO ACÉTICO	CLOROFÓRMIO	ETANOL	BENZINA
Cor adquirida				

PESQUISA DO NITROGÊNIO

- 1) Colocar em um tubo de ensaio cerca de 1g de uréia e 2 g de Cal Sodada(*).
- 2) Fixar o tubo no suporte universal, aquecendo-o a seguir.
- 3) Atente para o desprendimento de odor característico.
- 4) Aproxime da saída do tubo sob aquecimento uma fita de papel indicador universal umedecido em H_2O destilada. Observar e anotar.
- 5) Aproxime da saída do tubo sob aquecimento um bastão molhado em HCl concentrado. Observar e anotar.

(*) mistura 1 : 1 de Ca(OH)₂ e NaOH.

FATOR OBSERVADO	ODOR	PAPEL INDICADOR	HCl CONC.
Efeitos			

- 1. O professor deve organizar previamente os materiais e reagentes necessários para o desenvolvimento da atividade;
- 2) É indicada que os alunos que pesquisem anteriormente as características e cuidados a serem tomados com as substâncias a serem utilizadas;
- 3) Sugere-se o pedido de um relatório para ajudar na assimilação do conteúdo desenvolvido no laboratório, indicando a presença dos elementos organógenos.

PRÁTICA 04: UTILIDADE DE JOGOS NAS PRINCIPAIS FUNÇÕES ORGÂNICAS OBJETIVOS:

A) Estimular o aprendizado das principais funções orgânicas, de forma prazerosa.

MATERIAIS NECESSÁRIOS:

Materiais
Cartolina
Pinceis atômicos
Livros para consulta
Tesoura

PROCEDIMENTO:

- 1) Confeccione um jogo de dominó com as estruturas de compostos orgânicos, hidrocarbonetos, podendo utilizar estruturas e nomes
- 2) Elabore um jogo de memória com compostos orgânicos de variadas funções, procure utilizar compostos que façam parte da química do cotidiano,dando ênfase aos respectivos grupamentos funcionais.

Observações:

1) O professor deve organizar previamente os materiais necessários para o desenvolvimento da atividade.

PRÁTICA 05: TEOR DE ETANOL NA GASOLINA

OBJETIVOS:

- A) Estimar a concentração de etanol na gasolina através da manipulação das miscibilidades das substâncias utilizadas.
- B) Constatar se o teor de etanol na gasolina brasileira está nos padrões estabelecidos.

MATERIAIS:

Materiais	REAGENTES
Proveta de 50 mL	Água destilada
Funil de vidro	Gasolina
Bastão de vidro	

PROCEDIMENTO:

- 1. Usando um funil coloque gasolina numa proveta de 50 mL até 25 mL;
- 2. Complete o volume da proveta com água;
- 3. Agite a mistura de modo a promover íntimo contato entre os dois compostos;
- 4. deixe em repouso até ocorrer a nítida separação entre as duas fases;
- 5. Registre o volume de cada uma das fases:

Fase inferior: aquosa = ____ mL

Fase superior: gasolina = ____ mL;

6. Calcule o teor percentual de álcool etílico na gasolina.

- 1. O professor deve organizar previamente os materiais e reagentes necessários para o desenvolvimento da atividade, procurando dividir a turma em equipes de forma a não haver muito desperdício de material.
- 2. É sempre importante lembrar que a gasolina é uma mistura de hidrocarbonetos tóxica, bastante volátil e inflamável. Portanto, evite aspirar seus vapores, apague os bicos de gás do laboratório, e areje a sala antes de iniciar o ensaio.

- 3. É indicada que os alunos que pesquisem anteriormente as estruturas químicas da gasolina, do álcool e da água.
- 4. Sugere-se o pedido de um relatório para ajudar na assimilação do conteúdo desenvolvido no laboratório, tentando enfocar este processo nos testes de qualidade utilizados nos postos de gasolina.

PRÁTICA 06: OXIDAÇÃO DO ETANOL (Princípio do etiômetro)

OBJETIVOS:

- A) Observar as evidências da oxidação etanóica.
- B) Entender as reações que ocorrem no etilômetro (bafômetro)

Materiais	Reagentes
Béqueres	Água destilada
Pipeta de 10 mL	Etanol
Bastão de vidro	Ácido sulfúrico concenrado
Espátula	Dicromato de potássio
Bastão de vidro	

PROCEDIMENTO 1:

- 1) Separe 4 béqueres.
- 2) Adicione dicromato de potássio utilizando a ponta da espátula.
- 3) Coloque 3 a 4 gotas de ácido sulfúrico concentrado.
- 4) Agite o sistema sulfocrômico.

Obs:Cuidado, pois o sistema é exotémico e oxidante.

PROCEDIMENTO 2:

- 1) Prepare soluções etanólicas: 1%, 5%, 20% e 50% (v/v).
- 2) Adicione uma após a outra, 5 mL das soluções etanólicas nos sistemas sulfocrômicos.
- 3) Agite o sistema.
- 4) Aguarde 15 minutos.
- 5) Observe as colorações do sistemas.
- 6) Faça uma escala associando cor/concentação etanólica.
- 7) Escreva as equações químicas envolvendo a oxidação do etanol.

- 1) O professor deve organizar previamente os materiais e reagentes para o desenvolvimento da prática experimental, procurando dividir a turma em equipes de maneira que não haja desperdício de material.
- 2) É importante lembrar que o ácido sulfúrico e o dicromato de potássio são reagentes oxidantes e corrosivos. Muito cuidado ao manuseá-los.
- 3) Sugere-se o pedido de um relatório para ajudar na assimilação do conteúdo desenvolvido no laboratório, tentando enfocar este processo nos testes de teor alcoólico utilizados pelas polícias rodoviárias.

PRÁTICA 07: DEFINIÇÃO OPERACIONAL DE ALDEÍDOS E CETONAS

OBJETIVOS:

A) Identificar as propriedades distintas dos aldeídos e das cetonas geradas pela posição da carboxila na molécula orgânica.

MATERIAIS:

Vidrarias e equipamentos	Reagentes da parte 1	
Tubo de ensaio com saída lateral	1-Butanol	
Tubo de ensaio	2-Butanol	
Tubo de látex	Dicromato de potássio 1 mol/L	
Tubo de vidro	Ácido sulfúrico 6 mol/L	
	Água destilada	
	Nitrato de prata	
	Solução amoniacal de hidróxido de sódio	
	Lugol	
	Solução de hidróxido de sódio 1,0 mol/L	

PROCEDIMENTO:

Preparação e confirmação de Aldeídos

- 1. Preparar *um tubo de ensaio com saída lateral* e rolha superior, acoplando um tubo de látex na saída lateral do tubo. Inserir um pedaço de vareta de vidro na outra extremidade do tubo látex.
- 2. Colocar 1,5 ml de 1-Butanol no tubo de ensaio com saída lateral (Tubo A).
- 3. Adicionar 1,0 ml de K₂Cr₂O₇ a 1 mol/L.
- 4. Adicionar 1,0 ml de H₂SO₄ a 6 mol/L.
- Cerrar o tubo com a rolha, imergindo a ponta da vareta de vidro em outro tubo de ensaio
 (Tubo B) contendo 10 ml de água.
- 6. Aquecer o Tubo A, deixando borbulhar por algum tempo no Tubo B.
- 7) Juntar em um terceiro tubo de ensaio (Tubo C), 1ml AgNO₃ a 15% e 1ml de solução amoniacal de NaOH.
- 8) Juntar o conteúdo do Tubo C ao tubo B.
- 9) Observar e anotar. Sentir o odor característico do produto formado.

Preparação e confirmação de Cetonas

- 1. Preparar um tubo de ensaio com saída lateral e rolha superior, acoplando um tubo de látex na saída lateral do tubo. Inserir um pedaço de vareta de vidro na outra extremidade do tubo látex.
- 2. Colocar 1,5 ml de 2-Butanol no tubo de ensaio com saída lateral (Tubo A).
- 3. Adicionar 1,0 ml de $K_2Cr_2O_7$ a 1 mol/L.
- 4. Adicionar 1,0 ml de H₂SO₄ a 6 mol/L.
- Cerrar o tubo com a rolha, imergindo a ponta da vareta de vidro em outro tubo de ensaio
 (Tubo B) contendo 10 ml de água.
- 6. Aquecer o Tubo A, deixando borbulhar por algum tempo no Tubo B.
- 7. Juntar ao Tubo B, 3,0 ml de Lugol e solução de NaOH 1,0 mol/L, até o desaparecimento da cor do iodo.
- 8. Observar e anotar. Sentir o odor característico do produto formado.

- 1. O professor deve organizar previamente os materiais e reagentes necessários para o desenvolvimento da atividade, o ácido e a base utilizados devem ambos estar diluídos; deve-se minimizar ao máximo o uso de metais pesados, portanto planeje a atividade de maneira que este consumo seja minimizado;
- 2. As soluções devem ser descartadas em recipientes próprios e enviadas para coleta especial;
- 3. Sugere-se o pedido de um relatório, mostrando as equações das reações desenvolvidas chegando aos produtos, bem como indicar as características dos aldeídos e cetonas.

PRÁTICA 08: CARACTERIZAÇÃO DO GRUPAMENTO FUNCIONAL CARBONILA OBJETIVOS:

A) caracterizar compostos carbonílicos através de reações químicas.

MATERIAIS NECESSÁRIOS:

Vidrarias e equipamentos	Reagentes	
	Acetona	
Tubo de ensaio	Álcool ter-butilico	
Pipeta de 10 mL	Formaldeído	
Micropipetas	2,4-dinitrofenilhidrazina	
	Ácido crômico	

PROCEDIMENTO:

Teste com a 2,4 dinitrofenilhidrazona

- 1) Em três tubos de ensaio, identificados como 1, 2 e 3, coloque 4 gotas das amostras A, B e C.
- 2) Adicione 1 mL do reagente 2,4-DNFH e agite a mistura.
- 3) Observe as alterações, pois os compostos carbonílicos dão teste positivo, formando 2,4-dinitrofenilhidrazona, que são produtos sólidos e coloridos.
- 4) Anote os resultados.
- 5) Separe as amostras que deram resultado positivo com a 2,4-dinitrofenilhidrazona.
- 6) Coloque as amostras separadas em tubos de ensaio, previamente identificados, e dissolva 1 gota de cada amostra em 1 mL de acetona, e a esta solução adicione 1 gota de ácido crômico.
- 7) A formação de um precipitado verde ou azul esverdeado constitui um teste positivo para um composto oxidável. Anote e tire suas conclusões.

- 1) O professor deve organizar previamente os materiais e reagentes necessários para o desenvolvimento da atividade, procurando dividir a turma em equipes de forma a não haver muito desperdício de material.
- 2) Sugere-se o pedido de um relatório para ajudar na assimilação do conteúdo desenvolvido no laboratório, indicando a presença dos elementos do grupamento funcional carbonila nos compostos orgânicos.

PRÁTICA 09: CARÁTER ÁCIDO NA QUÍMICA ORGÂNICA

OBJETIVOS

- 1) Constatar a ionização das carboxilas através das medidas de pH.
- 2) Comparar a força ente ácidos orgânicos e ácidos inorgânicos.

Vidrarias e equipamentos	Reagentes
	Solução de ácido fórmico 0,1 M
Béqueres de 50 mL	Solução de ácido acético 0,1 M
Proveta de 50 mL	Solução de ácido clorídrico 0,1 M
Peagâmetro(pHmetro)	Solução de ácido fórmico 0,5 M
	Solução de ácido acético 0,5 M
	Solução de ácido clorídrico 0,5 M

PROCEDIMENTO 1:

- 1) Meça 30 mL da solução de ácido fórmico 0,1 M.
- 2) Meça 30mL da solução de ácido acético 0,1 M
- 3) Meça 30 mL da solução de ácido clorídrico 0,1 M.
- 4) Com o auxílio do *pHmetro* faça a medida do pH de cada solução.
- 5) Anote os resultados.

PROCEDIMENTO 2:

- 1) Meça 30 mL da solução de ácido fórmico 0,5 M.
- 2) Meça 30mL da solução de ácido acético 0,5 M
- 3) Meça 30 mL da solução de ácido clorídrico 0,5 M.
- 4) Com o auxílio do pHmetro faça a medida do pH de cada solução.
- 5) Anote os resultados.

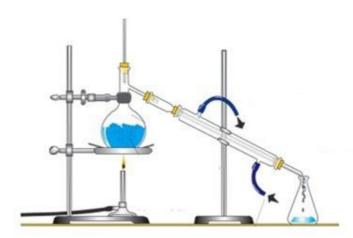
PROCEDIMENTO 3:

- 1) Compare os pH's das soluções ácidas de concentração 0,1 M.
- 2) Compare os pH's das soluções ácidas de concentração 0,5 M.
- 3) Compare os pH's do ácido fórmico 0,1 M e 0,5 M
- 4) Compare os pH's do ácido acético 0,1 M e 0,5M.
- 5) Compare os pH's do ácido clorídrico 0.1 M e 0,5 M.
- 6) Proponha uma sequência da força ácida das soluções analisadas.

- 1) O professor deve organizar previamente os materiais e reagentes necessários para o desenvolvimento da atividade;
- 2) É indicada que os alunos que pesquisem anteriormente as características e cuidados a serem tomados com os ácidos a serem utilizados.
- 3) Sugere-se o pedido de um relatório para ajudar na assimilação do conteúdo

PRÁTICA 10: REAÇÕES DE ESTERIFICAÇÃO

OBJETIVOS:


- A) Prever a formação de um composto orgânico.
- B) Identificar a função orgânica formada.

MATERIAIS:

Vidrarias	Reagentes
	Ácido etanóico
Sistema de destilação simples	Etanol
	Ácido sulfúrico diluído

PROCEDIMENTO:

1) Monte um sistema de destilação conforme mostra na figura abaixo

2) No balão de destilação adicione 10 mL de um ácido etanóico juntamente com 10 mL

de etanol.

- 3) Adicione 1 mL de ácido sulfúrico diluído;
- 4) Submeta esta substância a destilação, com uma temperatura média de 80°C;
- 5) Recolha o material destilado e analise o aroma.
- 6) Identifique a substância obtida utilizando a nomenclatura oficial (I.U.P.A.C.).
- 7) Equacione a reação química ocorrida.

- O professor deve organizar previamente os materiais e reagentes necessários para o
 Desenvolvimento da atividade dependendo da quantidade de sistemas disponíveis a
 Atividade deve ser demonstrativa ou grupos revezados.
- 2. É indicada que professor peça aos alunos que pesquisem as características e cuidados que devem ser tomados na manipulação do sistema de destilação e com os reagentes a serem utilizados.
- 3. Sugere-se o pedido de relatório onde o aluno possa expor seus resultados, ressaltando a importância dessas sínteses na indústria.

PRÁTICA 11: ISOMERIA

OBJETIVOS:

A) Identificar isômeros entre alcoóis, aldeídos e cetonas

MATERIAIS:

Equipamentos	Reagentes
Tubo de ensaio	1- Butanol
Pipetas descartáveis	2- Butanol
	Hidróxido de cálcio
	Lugol
	Reagente de Benedict

PROCEDIMENTO:

Isomeria entre alcoóis: Teste do iodofórmio

- 1) Colocar 0,5 mL de álcool "A" em um tubo de ensaio.
- 2) Adicionar 1 mL de Lugol.
- 3) Acrescentar 0,5 mL de NaOH concentrado.
- 4) Agitar e observar.
- 5) Repetir os itens 1 a 4, usando o álcool "B".
- 6) Anotar os resultados no quadro de controle.

Teste do	Álcool "A"	Álcool "B"
Iodofórmio		

Isomeria entre álcoois e cetonas: Teste do iodofórmio

- 1) Colocar 0,2 mL do composto "C" num tubo de ensaio.
- 2) Adicionar 1 mL de Lugol.
- 3) Acrescentar 0,1 mL de NaOH concentrado.
- 4) Agitar e observar.
- 5) Repetir os itens 1 a 4, usando o composto "C".
- 6) Anotar os resultados no quadro de controle.

Teste do	Composto "C"	Composto "D"
Iodofórmio		

Teste de Benedict

- 1) Colocar 1 mL do composto "C" num tubo de ensaio.
- 2) Adicionar 1 mL do reagente de Benedict.
- 3) Aquecer cuidando para não projetar-se o líquido pela boca do tubo.
- 4) Observar atentamente.
- 5) Repetir os itens 1 a 4, usando o composto "D".
- 6) Anotar os resultados no quadro de controle.

- 1. O professor deve organizar previamente os materiais e reagentes necessários para o desenvolvimento da atividade.
- 2) É indicado que professor peça aos alunos que pesquisem as características e cuidados que devem ser tomados na manipulação de álcoois, cetonas e aldeídos bem como suas características.
- 3) Sugere-se o pedido de um relatório para ajudar na assimilação do conteúdo desenvolvido no laboratório, bem como explicitar os resultados experimentais.

PRÁTICA 12: PAPILOSCOPIA

OBJETIVOS:

- A) Constatar as reações do iodo nas insaturações dos glicerídeos.
- B) Coletar impressões digitais (papiloscópicas).
- C) Perceber a importância das impressões digitais na identificação pessoal.

MATERIAIS:

Equipamentos	Reagentes
Erlenmeyer de 125 mL.	
Pinças	
Papel	Iodo sólido
Tesoura	
Fonte de calor	
Fita adesiva plástica	

PROCEDIMEMTO 1:

- 1) Recorte várias tiras de papel em formato retangular.
- 2) Pressione uma tira de papel com o dedo polegar direito.
- 3) Pressione outra tira de papel com o dedo polegar esquerdo.
- 4) Coloque 4 pelotas de iodo sólido no erlenmeyer.
- 5) Aqueça o erlenmeyer até a evolução dos vapores de iodo.
- 6) Com uma pinça ou prendedor coloque as tiras em contato com os vapores de iodo.
- 7) Não entre em contato com o iodo que está sublimando, pois é um agente oxidante.
- 8) Repita o procedimento com a impressão dos outros dedos.
- 9) Compare os resultados.

PROCEDIMENTO 2:

- 1) Com as mãos pressione um copo ou béquer algumas vezes.
- 2) Colete as impressões fixando fitas adesivas plásticas ("Durex") na parte externa do copo.
- 3) Retire as fitas adesivas.
- 4) Com uma pinça coloque as fitas adesivas em contato com os vapores de iodo. Observe.
- 5) Verifique os resultados.

- 1) O professor deve organizar previamente os materiais e reagentes necessários para o desenvolvimento da atividade.
- 2) É indicado que o professor peça aos alunos e pesquisem as características e cuidados que devem ser tomados com manipulação de agentes oxidantes.
- 3) Sugere-se o pedido de um relatório para ajudar na assimilação dos conteúdos desenvolvidos no laboratório, bem como explicar resultados experimentais.

PRÁTICA 13: REAÇÃO DE SAPONIFICAÇÃO

OBJETIVOS:

- A) Obter sabão a partir do óleo de soja.
- B) Constatar o caráter básico do sabão.

MATERIAIS NECESSÁRIOS:

Vidrarias	Reage	ntes
Béquer de 300ml	Cloreto de sódio	Óleo vegetal
Bastão de vidro	Água	Álcool etílico
Fonte de calor	Hidróxido de sódio	Ácido acético

PROCEDIMENTO:

PREPARO DAS SOLUÇÕES

- 1) Solução saturada de NaCl: adicionar 150 g de NaCl a 150 mL de água destilada. Agite bem.
- 2) Solução de NaOH 25%: Adicionar 25ml de NaOH a 100 mL de água. Agitar até a dissolução total.

OBS: CUIDADO! A reação é bastante exotérmica.

PREPARO DO SABÃO

- 1) Transfira 20 ml de óleo vegetal para um béquer de 300 mL.
- 2) Adicione 20 ml de etanol (álcool etílico) ao béquer de 300 mL.
- 3) Adicione 100 mL de NaOH 25% ao béquer de 300 mL.
- 4) Aqueça lentamente, agitando sempre com um bastão de vidro.
- 5) Depois de 20 minutos observe a formação de uma massa pastosa, contendo sabão,

glicerol e excesso de NaOH.

- 7) Adicione lentamente ácido acético e controle o pH entre 6 e 7 com a ajuda de papel Indicador (ou papel tornassol).
- 8) Adicione 150 mL de solução saturada de NaCl, agitando vigorosamente para precipitar o sabão (este processo vai aumentar a densidade da solução aquosa fazendo com que o sabão flutue).
- 9) Filtre a mistura para separar o sabão.

- professor deve organizar previamente os materiais e reagentes necessários para o desenvolvimento da atividade.
- 2) Sugere-se o pedido de relatório onde o aluno possa expor seus resultados, ressaltando a importância dessas sínteses na indústria

PRÁTICA 14: PRODUÇÃO DE POLÍMERO

OBJETIVOS:

A) Produzir um polímero resistente e de baixo custo.

MATERIAIS:

Vidrarias, equipamentos e outros	Reagentes
Proveta de 10 mL	Leite desnatado
Fonte de aquecimento	Bicarbonato de sódio
Bastão de vidro	Vinagre
Béquer de 150 mL	
Papel toalha	
Pano limpo	

PROCEDIMENTO:

- 1) Aqueça um copo de leite desnatado até ficar morno (cerca de 40°C).
- 2) Retire-o do fogo e acrescente cerca de 10mL de vinagre aos poucos, agitando sempre, até que não apareça mais nenhum material sólido e o líquido esteja claro.
- 3) Observe o que ocorre e faça as anotações.
- 4) Coe a mistura formada em um pano e aperte-o para escoar a parte liquida(soro).
- 5) Lave, com pouca água, o material sólido (esse material sólido é a caseína) e seque-o novamente, utilizando o papel toalha.
- 6) Separe uma parte do material sólido ainda úmido e adicione o NaHCO_{3(s)} (bicarbonato de sódio).
- 7) Agite bem com um bastão de vidro.
- 8) Observe o que ocorre e faça as devidas anotações.
- 9) Passe a pasta formada entre duas folhas de papel e deixe secar bem.
- 10) Observe os resultados.

- 1) O professor deve organizar previamente os materiais e reagentes necessários para o desenvolvimento da atividade.
- 2) Sugere-se o pedido de relatório onde o aluno possa expor seus resultados, ressaltando a importância dos polímeros na sociedade moderna.

PRÁTICA 15: DETERMINAÇÃO DO CARÁTER ACIDO-BASE DOS SURFACTANTES OBJETIVO:

A) Observar a influência do pH nas propriedades tensoativas dos surfactantes.

MATERIAIS:

Vidrarias, equipamentos e outros	Reagentes
Tubos de ensaio Papel de tornassol vermelho ou indicador universal.	Solução de sabão Solução de detergente Solução de ácido clorídrico Solução de cloreto de cálcio

PROCEDIMENTO:

- 1) Coloque 2 mL de solução de sabão em um tubo de ensaio
- 2) Anote as características da solução de sabão: cor da espuma.
- 3) Teste o caráter da solução (ácido ou básico) com papel de tornassol vermelho ou papel indicador universal. Anote o resultado.
- 4) Adicione 5 mL de solução diluída de ácido clorídrico e agite o tubo de ensaio.
- 5) Em um segundo tubo de ensaio , coloque 2 mL da solução de sabão e 2 mL de solução de cloreto de cálcio e agite.
- 6) Observe os resultados e anote-os.
- 7) Repita novamente a sequência, utilizando 2mL de solução de detergente em vez da solução de sabão.
- 8) Observe os resultados e anote-os.

- 1) O professor deve organizar previamente os materiais e reagentes necessários para o desenvolvimento da aula prática.
- 2) Sugere-se o pedido de relatório onde o estudante possa expor seus resultados, ressaltando o que ocorreu em cada etapa do experimento.

PRÁTICA 16: IDENTIFICAÇÃO DE PROTEÍNAS, GLICÍDEOS E LIPÍDEOS NOS ALIMENTOS

OBJETIVOS: Observar a ocorrência dos macronutrientes na dieta humana.

MATERIAIS NECESSÁRIOS:

Vidrarias e materiais	Reagentes
Proveta de 100 mL	Solução de hidróxido de sódio 10% (m/v)
Béqueres de 250 mL	Solução de sulfato de cobre 5% (m/v)
Erlenmeyer de 250 mL	Solução de Biureto
Tubo de ensaio	Iodo ressublimado
Bastão de vidro	Água
Fonte de calor	Açúcar (Sacarose)
Espátula	
Clara de ovo	
Gema de ovo	
Papel	
Tesoura	
Pinça	

PROCEDIMENTO:

Identificação das proteínas

- 1) Coloque uma clara de ovo em 50 mL de água. Agite bastante.
- 2) Separe 10 mL da dispersão obtida.
- 3) Em seguida adicione 3 mL da solução de NaOH a 10% e 5 gotas da solução de $CuSO_4$ a 5%.
- 4) Observe o resultado e faça anotações.

Identificação dos lipídeos

- 1) Coloque uma gema de ovo no béquer. Agite bastante
- 2) Corte algumas tiras de papel.

- 3) Coloque a ponta da tira em contato com a dispersão.
- 4) Coloque 3 a 4 pelotas de iodo sólido no erlenmeyer.
- 5) Aqueça o erlenmeyer até a evolução dos vapores de iodo.
- 6) Com uma pinça ou prendedor coloque as tiras em contato com os vapores de iodo.
- 7) Observe e anote os resultados.

Identificação dos glicídeos

- 1) Prepare uma solução concentrada de sacarose.
- 2) Transfira 1 mL da solução para um tubo de ensaio.
- 3) Adicionar 1 mL do reagente de Benedict.
- 4) Com uma pinça aqueça o tubo de ensaio.
- 5) Observe e anote os resultados.

- 1) O professor deve organizar previamente os materiais e reagentes necessários para o desenvolvimento da aula prática.
- 2) Sugere-se o pedido de um relatório para ajudar na assimilação do conteúdo desenvolvido no laboratório, tentando enfocar os testes de identificação dos nutrientes nos alimentos.

SÍTIOS INTERESSANTES

http://www.searadaciencia.ufc.br/
http://rived.mec.gov.br/
http://www.brasilescola.com/quimica/
http://www.sbq.org.br/

REFERÊNCIAS BIBLIOGRÁFICAS

ABREU, P. & SILVA FILHO, F.B. – Caderno do Professor de Química: Escola Julia Alves Pessoa – Fortaleza, CE – 2010

ATKINS, P.W. Physical Chemistry. 5. ed. Oxford, Oxford University Press, 1994.

ATKINS, P.W.; JONES, L. **Princípios da Química** - **Questionando a vida moderna e o meio ambiente.** Porto Alegre: Bookman,2001.914p.

BELTRAN & CISCATO. **Histórico e Principais Problemas do Ensino de Química.** São Paulo: Cortez, 1991.

BISHOP, C.B.;BISHOP, M.B.; WHINTER, K. W.; GAILEV,K.D.; Experiments in General Chemistry, Saunders College Publishing, 1992.

CEARÁ, SECRETARIA DE EDUCAÇÃO – **Metodologias de Apoio: Matrizes curriculares para o ensino médio** – Fortaleza: SEDUC, 2009. (Coleção Escola Aprendente – Volume 1)

D'AMBROSIO, U. Educação Matemática: Da teoria a prática. Campinas, SP: Papirus,. p.80. 1996.

DIAS, M.V.; GUIMARÃES, P.I.; MERÇON, F. Corantes naturais – Extração e Emprego como Indicadores de pH. **Química Nova na Escola**, n.17, p.27 – 31, 2003.

FELTRE, Ricardo. Química. São Paulo. Ed. Moderna, 2000.

FONSECA, Martha Reis. **Completamente Química: Química Geral** – São Paulo – Editora FTD - 2001

GILBERT, CASTELLAN – Princípios de Físico Química – Editora LTC – 2006.

MASTERTON, W.L.; SLOWINSKI, E.S. e WOLSEY, W.C. Chemical Principles in the Laboratory, W. B. Saunders Company, 1973.

MASTERTON, W.L. & HURLEY, C, N. Chemistry Principles & Reactions. 3. ed. Orlando, Saunders College Publishing, 1997.

MOBILAB – **Manual de Química** – Laboratório Multidisciplinar – 2004.

SILVA FILHO. FERNANDO BARROS DA. – **Manual de Práticas de Química:** Escola Julia Alves Pessoa – Fortaleza, CE – 2009

SILVA FILHO, FERNANDO BARROS DA - **Proposta de um programa de coordenação e aulas experimentais para os laboratórios de ciências da rede de Ensino Público no Ceará** – Monografia UFC, 2009.

USBERCO, SALVADOR – **Química** – São Paulo - Editora Saraiva – 2001.

VOGEL, Análise Inorgânica Quantitativa – 4ª Ed, Editora Guanabara Dois S.A, Brasil, 1981.

COMISSÃO DE FORMAÇÃO E PESQUISA DA SEFOR

FICHA TÉCNICA DOS AUTORES

DANIEL RICARDO XIMENES LOPES

Licenciado em ciências biológicas - UFRN

Mestre em Psicobiologia – UFRN

Professor da Escola Estadual de Ensino Fundamental e Médio Professor Paulo Freire

Professor do curso pré-vestibular do Colégio Municipal Filgueiras Lima

E-mail: ximeneslopes@yahoo.com.br

DANIEL VASCONCELOS ROCHA

Licenciado em ciências biológicas, UFC
Especialista em Administração Escolar - UEVA
Especialista no Ensino de Biologia - FFB
Responsável Pelos Laboratórios de Ciências, Matemática, Robótica, Astronomia e Educação Científica e
Ambiental da SEFOR/SEDUC

E-mail: danielvr@seduc.ce.gov.br ou danielrochabiologia@hotmail.com

FERNANDO BARROS DA SILVA FILHO

Licenciado em Química – UFC Professor da Escola Estadual de Ensino Fundamental e Médio Júlia Alves Pessoa E-mail: professor-fernandofilho@hotmail.com

JOSÉ WELLINGTON LEITE TEÓFILO

Licenciado em ciências biológias, UECE Professor da Escola Estadual de Ensino Profissional Júlia Giffoni E-mail: wellington.teofilo@gmail.com

RICARDO ARAÚJO FELIPE

Licenciado em Física – UECE
Especialista no Ensino de Física – FFB
Especialista em Pesquisa Científica – UECE
Professor da Escola Estadual CAIC Maria Alves Carioca
E-mail: ricardoafelipe@hotmail.com

TARGINO MAGALHÃES DE CARVALHO FILHO

Graduado em Química Industrial – UFC
Licenciatura Plena em Disciplinas Específicas do Ensino Básico – UECE
Mestre em Química Inorgânica – UFC
Professor da Escola Estadual de Ensino Médio Liceu de Messejana
E-mail: targinomagalhaesdecarvalho@yahoo.com

ANUAL DE ATIVIDADES PRÁT

Estamos entrando na era do que se costuma chamar a "sociedade do conhecimento". A escola não se justifica pela apresentação do conhecimento obsoleto e ultrapassado e muitas vezes morto. Sobretudo ao se falar em ciências e tecnologia. Será Essencial para a escola estimular a aquisição, a organização, a geração e a difusão do conhecimento vivo, integrado nos valores e expectativas da sociedade. Isso será impossível de se atingir sem ampla utilização da tecnologia na educação.

(D'Ambrósio, 1996, pg. 80)

Secretaria da Educação Superintendência das Escolas Estaduais de Fortaleza

Centro Administrativo Governador Virgilio Távora Av. Gal. Afonso Albuquerque Lima s/n, Cambeba 60.819-900 Fortaleza – Ceará – Brasil www.seduc.ce.gov.br